离线强化学习用于在实时访问环境昂贵或不可能的情况下培训策略。作为这些恶劣条件的自然后果,在采取行动之前,代理商可能缺乏完全遵守在线环境的资源。我们配备了这种情况资源受限的设置。这导致脱机数据集(可用于培训)的情况可以包含完全处理的功能(使用功能强大的语言模型,图像模型,复杂传感器等)在实际在线时不可用。此断开连接导致离线RL中的有趣和未开发的问题:是否可以使用丰富地处理的脱机数据集来培训可访问在线环境中的更少功能的策略?在这项工作中,我们介绍并正式化这一新颖的资源受限的问题设置。我们突出了使用有限功能培训的完整脱机数据集和策略培训的策略之间的性能差距。我们通过策略传输算法解决了这种性能缺口,该策略传输算法首先使用功能完全可用的脱机数据集列举教师代理,然后将此知识传输到仅使用资源约束功能的学生代理。为了更好地捕获此设置的挑战,我们提出了一个数据收集过程:RL(RC-D4RL)的资源受限数据集。我们在RC-D4RL和流行的D4RL基准测试中评估传输算法,并观察到基线上的一致性改进(无需传输)。实验的代码在https://github.com/jayanthrr /rc-offlinerl上获得。
translated by 谷歌翻译
在过去的两年中,世界遭受了COVID-19(SARS-COV-2)的困扰,造成了人们的日常生活损失和变化。因此,使用深度学习对胸部计算机断层扫描(CT)扫描进行了深入学习的自动检测变得很有希望,这有助于有效纠正诊断。最近,提出了基于变压器的COVID-19检测方法,以利用CT体积中的3D信息。但是,其选择切片的采样方法并不是最佳的。为了利用CT体积中的丰富3D信息,我们使用新型的数据策展和适应性采样方法提出了基于变压器的COVID-19检测,并使用灰度级别同时出现矩阵(GLCM)。为了训练由CNN层组成的模型,然后是变压器体系结构,我们首先基于肺部分割执行数据策划,并利用CT卷中每个切片的GLCM值的熵来为预测选择重要切片。实验结果表明,所提出的方法以较大的边缘改善了检测性能,而没有对模型进行太多修改。
translated by 谷歌翻译
在本文中,我们开发了一种高效的回顾性深度学习方法,称为堆叠U-网,具有自助前沿,解决MRI中刚性运动伪影的问题。拟议的工作利用损坏的图像本身使用额外的知识前瞻,而无需额外的对比度数据。所提出的网络通过共享来自相同失真对象的连续片的辅助信息来学习错过的结构细节。我们进一步设计了一种堆叠的U-网的细化,便于保持图像空间细节,从而提高了像素到像素依赖性。为了执行网络培训,MRI运动伪像的模拟是不可避免的。我们使用各种类型的图像前瞻呈现了一个密集的分析:来自同一主题的其他图像对比的提出的自助前锋和前锋。实验分析证明了自助前锋的有效性和可行性,因为它不需要任何进一步的数据扫描。
translated by 谷歌翻译
We propose a new causal inference framework to learn causal effects from multiple, decentralized data sources in a federated setting. We introduce an adaptive transfer algorithm that learns the similarities among the data sources by utilizing Random Fourier Features to disentangle the loss function into multiple components, each of which is associated with a data source. The data sources may have different distributions; the causal effects are independently and systematically incorporated. The proposed method estimates the similarities among the sources through transfer coefficients, and hence requiring no prior information about the similarity measures. The heterogeneous causal effects can be estimated with no sharing of the raw training data among the sources, thus minimizing the risk of privacy leak. We also provide minimax lower bounds to assess the quality of the parameters learned from the disparate sources. The proposed method is empirically shown to outperform the baselines on decentralized data sources with dissimilar distributions.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
Learning to predict masked tokens in a sequence has been shown to be a powerful pretraining objective for large-scale language models. After training, such masked language models can provide distributions of tokens conditioned on bidirectional context. In this short draft, we show that such bidirectional conditionals often demonstrate considerable inconsistencies, i.e., they can not be derived from a coherent joint distribution when considered together. We empirically quantify such inconsistencies in the simple scenario of bigrams for two common styles of masked language models: T5-style and BERT-style. For example, we show that T5 models often confuse its own preference regarding two similar bigrams. Such inconsistencies may represent a theoretical pitfall for the research work on sampling sequences based on the bidirectional conditionals learned by BERT-style MLMs. This phenomenon also means that T5-style MLMs capable of infilling will generate discrepant results depending on how much masking is given, which may represent a particular trust issue.
translated by 谷歌翻译
Supervision for metric learning has long been given in the form of equivalence between human-labeled classes. Although this type of supervision has been a basis of metric learning for decades, we argue that it hinders further advances of the field. In this regard, we propose a new regularization method, dubbed HIER, to discover the latent semantic hierarchy of training data, and to deploy the hierarchy to provide richer and more fine-grained supervision than inter-class separability induced by common metric learning losses. HIER achieved this goal with no annotation for the semantic hierarchy but by learning hierarchical proxies in hyperbolic spaces. The hierarchical proxies are learnable parameters, and each of them is trained to serve as an ancestor of a group of data or other proxies to approximate the semantic hierarchy among them. HIER deals with the proxies along with data in hyperbolic space since geometric properties of the space are well-suited to represent their hierarchical structure. The efficacy of HIER was evaluated on four standard benchmarks, where it consistently improved performance of conventional methods when integrated with them, and consequently achieved the best records, surpassing even the existing hyperbolic metric learning technique, in almost all settings.
translated by 谷歌翻译
Steering language generation towards objectives or away from undesired content has been a long-standing goal in utilizing language models (LM). Recent work has demonstrated reinforcement learning and weighted decoding as effective approaches to achieve a higher level of language control and quality with pros and cons. In this work, we propose a novel critic decoding method for controlled language generation (CriticControl) that combines the strengths of reinforcement learning and weighted decoding. Specifically, we adopt the actor-critic framework to train an LM-steering critic from non-differentiable reward models. And similar to weighted decoding, our method freezes the language model and manipulates the output token distribution using called critic, improving training efficiency and stability. Evaluation of our method on three controlled generation tasks, namely topic control, sentiment control, and detoxification, shows that our approach generates more coherent and well-controlled texts than previous methods. In addition, CriticControl demonstrates superior generalization ability in zero-shot settings. Human evaluation studies also corroborate our findings.
translated by 谷歌翻译
Task-oriented dialogue (TOD) systems are mainly based on the slot-filling-based TOD (SF-TOD) framework, in which dialogues are broken down into smaller, controllable units (i.e., slots) to fulfill a specific task. A series of approaches based on this framework achieved remarkable success on various TOD benchmarks. However, we argue that the current TOD benchmarks are limited to surrogate real-world scenarios and that the current TOD models are still a long way from unraveling the scenarios. In this position paper, we first identify current status and limitations of SF-TOD systems. After that, we explore the WebTOD framework, the alternative direction for building a scalable TOD system when a web/mobile interface is available. In WebTOD, the dialogue system learns how to understand the web/mobile interface that the human agent interacts with, powered by a large-scale language model.
translated by 谷歌翻译
Estimating the 6D pose of objects is one of the major fields in 3D computer vision. Since the promising outcomes from instance-level pose estimation, the research trends are heading towards category-level pose estimation for more practical application scenarios. However, unlike well-established instance-level pose datasets, available category-level datasets lack annotation quality and provided pose quantity. We propose the new category level 6D pose dataset HouseCat6D featuring 1) Multi-modality of Polarimetric RGB+P and Depth, 2) Highly diverse 194 objects of 10 household object categories including 2 photometrically challenging categories, 3) High-quality pose annotation with an error range of only 1.35 mm to 1.74 mm, 4) 41 large scale scenes with extensive viewpoint coverage, 5) Checkerboard-free environment throughout the entire scene. We also provide benchmark results of state-of-the-art category-level pose estimation networks.
translated by 谷歌翻译