自动检测视网膜结构,例如视网膜血管(RV),凹起的血管区(FAZ)和视网膜血管连接(RVJ),对于了解眼睛的疾病和临床决策非常重要。在本文中,我们提出了一种新型的基于投票的自适应特征融合多任务网络(VAFF-NET),用于在光学相干性层析成像(OCTA)中对RV,FAZ和RVJ进行联合分割,检测和分类。提出了一个特定于任务的投票门模块,以适应并融合两个级别的特定任务的不同功能:来自单个编码器的不同空间位置的特征,以及来自多个编码器的功能。特别是,由于八八座图像中微脉管系统的复杂性使视网膜血管连接连接到分叉/跨越具有挑战性的任务的同时定位和分类,因此我们通过结合热图回归和网格分类来专门设计任务头。我们利用来自各种视网膜层的三个不同的\ textit {en face}血管造影,而不是遵循仅使用单个\ textit {en face}的现有方法。为了促进进一步的研究,已经发布了这些数据集的部分数据集,并已发布了公共访问:https://github.com/imed-lab/vaff-net。
translated by 谷歌翻译