Recently, the self-supervised pre-training paradigm has shown great potential in leveraging large-scale unlabeled data to improve downstream task performance. However, increasing the scale of unlabeled pre-training data in real-world scenarios requires prohibitive computational costs and faces the challenge of uncurated samples. To address these issues, we build a task-specific self-supervised pre-training framework from a data selection perspective based on a simple hypothesis that pre-training on the unlabeled samples with similar distribution to the target task can bring substantial performance gains. Buttressed by the hypothesis, we propose the first yet novel framework for Scalable and Efficient visual Pre-Training (SEPT) by introducing a retrieval pipeline for data selection. SEPT first leverage a self-supervised pre-trained model to extract the features of the entire unlabeled dataset for retrieval pipeline initialization. Then, for a specific target task, SEPT retrievals the most similar samples from the unlabeled dataset based on feature similarity for each target instance for pre-training. Finally, SEPT pre-trains the target model with the selected unlabeled samples in a self-supervised manner for target data finetuning. By decoupling the scale of pre-training and available upstream data for a target task, SEPT achieves high scalability of the upstream dataset and high efficiency of pre-training, resulting in high model architecture flexibility. Results on various downstream tasks demonstrate that SEPT can achieve competitive or even better performance compared with ImageNet pre-training while reducing the size of training samples by one magnitude without resorting to any extra annotations.
translated by 谷歌翻译
作为最成功的AI驱动应用程序之一,推荐系统的目的是通过在我们生活的许多方面提供个性化建议,以有效而有效的方式帮助人们做出适当的决定,尤其是针对各种面向人类的在线服务,例如E-商务平台和社交媒体网站。在过去的几十年中,推荐系统的快速发展通过创造经济价值,节省时间和精力以及促进社会利益,从而使人类受益匪浅。但是,最近的研究发现,数据驱动的推荐系统可能会对用户和社会构成严重威胁,例如传播虚假新闻以操纵社交媒体网站中的公众舆论,扩大不公平为代表性不足的团体或在工作匹配服务中的个人,或从建议结果中推断隐私信息。因此,系统的可信赖性一直吸引着各个方面的关注,以减轻推荐系统引起的负面影响,以增强公众对推荐系统技术的信任。在这项调查中,我们提供了可信赖的推荐系统(TREC)的全面概述,特别关注六个最重要的方面;即安全与鲁棒性,非歧视与公平,解释性,隐私,环境福祉以及问责制和可审计性。对于每个方面,我们总结了最近的相关技术,并讨论了潜在的研究方向,以帮助未来实现值得信赖的推荐系统。
translated by 谷歌翻译
在多模式的多代理轨迹预测中,尚未完全解决两个主要挑战:1)如何测量相互作用模块引起的不确定性,从而导致多个试剂的预测轨迹之间引起相关性; 2)如何对多个预测进行排名并选择最佳预测轨迹。为了应对这些挑战,这项工作首先提出了一个新颖的概念,协作不确定性(CU),该概念模拟了互动模块引起的不确定性。然后,我们使用原始置换量等不确定性估计器来构建一般的CU感知回归框架,以完成回归和不确定性估计任务。此外,我们将提出的框架应用于当前的SOTA多代理多模式预测系统作为插件模块,该模块使SOTA系统能够达到1)估计多代理多模式轨迹预测任务的不确定性; 2)对多个预测进行排名,并根据估计的不确定性选择最佳预测。我们对合成数据集和两个公共大规模多代理轨迹预测基准进行了广泛的实验。实验表明:1)在合成数据集上,Cu-Aware回归框架允许模型适当地近似地面真相拉普拉斯分布; 2)在多代理轨迹预测基准上,Cu-Aware回归框架稳步帮助SOTA系统改善了其性能。特别是,提出的框架帮助Vectornet在Nuscenes数据集中所选最佳预测的最终位移误差方面提高了262 cm; 3)对于多机构多模式轨迹预测系统,预测不确定性与未来随机性呈正相关; 4)估计的CU值与代理之间的交互式信息高度相关。
translated by 谷歌翻译
知识图(kgs)由于能够存储适用于许多领域的关系知识的能力,因此有助于多种应用。尽管在创造和维护方面进行了巨大的努力,但即使是最大的公斤也远非完整。因此,KG完成(KGC)已成为KG研究最关键的任务之一。最近,该领域的大量文献围绕着使用图神经网络(GNN)学习强大的嵌入,从而利用KGS中的拓扑结构。具体而言,已经做出了专门的努力,以扩展GNN,通常是为简单的同质和单一相关图设计的,以通过设计更复杂的聚合方案而不是相邻节点(关键的节点)(通过设计更复杂的聚合方案)(为GNN绩效)适当利用多关系信息。这些方法的成功自然归因于GNN在简单的多层感知器(MLP)模型上使用,这是由于它们的附加聚合功能。在这项工作中,我们发现简单的MLP模型能够达到与GNN的可比性能,这表明聚集可能并不像以前那样重要。通过进一步的探索,我们显示出仔细的评分功能和损失功能设计对KGC模型性能的影响要大得多,并且实际上不需要聚集。这表明了评分功能设计,损失功能设计和先前工作中的聚集结合,并有很有希望的见解当今最先进的KGC方法的可伸缩性,以及对KGC任务更合适的聚合设计的仔细注意明天。该实现可在线获得:https://github.com/juanhui28/are_mpnns_helpful。
translated by 谷歌翻译
多模式单细胞技术的最新进展已使从同一细胞中的多个OMICS数据同时采集,从而更深入地了解细胞状态和动力学。但是,从多模式数据,模拟模式之间的关系并更重要的是,将大量的单模式数据集纳入下游分析是一项挑战。为了应对这些挑战并相应地促进了多模式的单细胞数据分析,已经引入了三个关键任务:$ \ textit {模式预测} $,$ \ textit {modital {modital {modational conterative} $和$ \ textit {intimit {interion {intim interding} $。在这项工作中,我们提出了一个通用图形神经网络框架$ \ textit {scmognn} $来解决这三个任务,并表明$ \ textit {scmognn} $与最新的任务相比,在所有三个任务中都表现出了卓越的结果。艺术和传统方法。我们的方法是\ textit {模式预测}的整体排名的官方获奖者,来自神经2021竞赛\ footNote {\ url {https://openproblems.bio/neurips_2021/}},我们的所有方法都已整合到我们的所有实现中舞蹈软件包\ footNote {\ url {https://github.com/omicsml/dance}}}。
translated by 谷歌翻译
车辆到所有(V2X)通信技术使车辆与附近环境中许多其他实体之间的协作可以从根本上改善自动驾驶的感知系统。但是,缺乏公共数据集极大地限制了协作感知的研究进度。为了填补这一空白,我们提出了V2X-SIM,这是一个针对V2X辅助自动驾驶的全面模拟多代理感知数据集。 V2X-SIM提供:(1)\ hl {Multi-Agent}传感器记录来自路边单元(RSU)和多种能够协作感知的车辆,(2)多模式传感器流,可促进多模式感知和多模式感知和(3)支持各种感知任务的各种基础真理。同时,我们在三个任务(包括检测,跟踪和细分)上为最先进的协作感知算法提供了一个开源测试台,并为最先进的协作感知算法提供了基准。 V2X-SIM试图在现实数据集广泛使用之前刺激自动驾驶的协作感知研究。我们的数据集和代码可在\ url {https://ai4ce.github.io/v2x-sim/}上获得。
translated by 谷歌翻译
知识图嵌入(KGE)的有效性在很大程度上取决于建模固有关系模式和映射属性的能力。但是,现有方法只能以不足的建模能力捕获其中的一些。在这项工作中,我们提出了一个名为House的更强大的KGE框架,该框架涉及基于两种家庭转换的新型参数化:(1)住户旋转以实现建模关系模式的较高能力;(2)处理复杂关系映射属性的住户预测。从理论上讲,房屋能够同时建模关键的关系模式和映射属性。此外,房屋是对现有基于旋转的模型的概括,同时将旋转扩展到高维空间。从经验上讲,House在五个基准数据集上实现了新的最新性能。我们的代码可在https://github.com/anrep/house上找到。
translated by 谷歌翻译
在传统的对象检测框架中,从图像识别模型继承的骨干体提取了深层特征,然后颈部模块融合了这些潜在特征,以在不同的尺度上捕获信息。由于对象检测的分辨率比图像识别大得多,因此骨干的计算成本通常主导了总推断成本。这种沉重的背部设计范式主要是由于历史遗产将图像识别模型传输到对象检测时,而不是端到端的优化设计以进行对象检测。在这项工作中,我们表明这种范式确实导致了亚最佳对象检测模型。为此,我们提出了一种新型的重颈范式,长颈鹿,这是一个类似长颈鹿的网络,用于有效的对象检测。长颈鹿使用极轻的骨干和非常深的颈部模块,可同时同时在不同的空间尺度以及不同级别的潜在语义之间进行密集的信息交换。该设计范式允许检测器即使在网络的早期阶段,也可以在相同的优先级处理高级语义信息和低级空间信息,从而使其在检测任务中更有效。对多个流行对象检测基准的数值评估表明,长颈鹿在广泛的资源约束中始终优于先前的SOTA模型。源代码可在https://github.com/jyqi/giraffedet上获得。
translated by 谷歌翻译
图表神经网络(GNNS)已广泛应用于推荐任务,并获得了非常吸引人的性能。然而,大多数基于GNN的推荐方法在实践中遭受数据稀疏问题。同时,预训练技术在减轻了各个领域(如自然语言处理(NLP)和计算机视觉(CV)等域中的数据稀疏而取得了巨大成功。因此,图形预培训具有扩大基于GNN的建议的数据稀疏的巨大潜力。但是,预先培训GNN,建议面临独特的挑战。例如,不同推荐任务中的用户项交互图具有不同的用户和项目集,并且它们通常存在不同的属性。因此,在NLP和CV中常用的成功机制将知识从预训练任务转移到下游任务,例如共享所学习的嵌入式或特征提取器,而不是直接适用于现有的基于GNN的推荐模型。为了解决这些挑战,我们精致地设计了一个自适应图形预训练框架,用于本地化协作滤波(适应)。它不需要传输用户/项目嵌入式,并且能够跨越不同图的共同知识和每个图形的唯一性。广泛的实验结果表明了适应的有效性和优越性。
translated by 谷歌翻译
建议中的用户项交互可以自然地将其作为用户项二分钟图。鉴于图形表示学习中图形神经网络(GNN)的成功,已提出基于GNN的C方法来推进推荐系统。这些方法通常根据学习的用户和项目嵌入式提出建议。但是,我们发现它们不会在真实建议中表现出很常见的稀疏稀疏用户项目图。因此,在这项工作中,我们介绍了一种新颖的视角,以建立基于GNN的CF方法,了解建议的框架局部图协作滤波(LGCF)。 LGCF的一个关键优势在于它不需要为每个用户和项目学习嵌入,这在稀疏方案中具有挑战性。或者,LGCF旨在将有用的CF信息编码为本地化的图表并基于这些图形提出建议。关于各种数据集的广泛实验验证了LGCF的有效性,尤其是稀疏场景。此外,经验结果表明LGCF为基于嵌入的CF模型提供了互补信息,该模型可用于提高推荐性能。
translated by 谷歌翻译