The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Multimodal image-text models have shown remarkable performance in the past few years. However, evaluating their robustness against distribution shifts is crucial before adopting them in real-world applications. In this paper, we investigate the robustness of 9 popular open-sourced image-text models under common perturbations on five tasks (image-text retrieval, visual reasoning, visual entailment, image captioning, and text-to-image generation). In particular, we propose several new multimodal robustness benchmarks by applying 17 image perturbation and 16 text perturbation techniques on top of existing datasets. We observe that multimodal models are not robust to image and text perturbations, especially to image perturbations. Among the tested perturbation methods, character-level perturbations constitute the most severe distribution shift for text, and zoom blur is the most severe shift for image data. We also introduce two new robustness metrics (MMI and MOR) for proper evaluations of multimodal models. We hope our extensive study sheds light on new directions for the development of robust multimodal models.
translated by 谷歌翻译
Physics-Informed Neural Networks (PINNs) have recently been proposed to solve scientific and engineering problems, where physical laws are introduced into neural networks as prior knowledge. With the embedded physical laws, PINNs enable the estimation of critical parameters, which are unobservable via physical tools, through observable variables. For example, Power Electronic Converters (PECs) are essential building blocks for the green energy transition. PINNs have been applied to estimate the capacitance, which is unobservable during PEC operations, using current and voltage, which can be observed easily during operations. The estimated capacitance facilitates self-diagnostics of PECs. Existing PINNs are often manually designed, which is time-consuming and may lead to suboptimal performance due to a large number of design choices for neural network architectures and hyperparameters. In addition, PINNs are often deployed on different physical devices, e.g., PECs, with limited and varying resources. Therefore, it requires designing different PINN models under different resource constraints, making it an even more challenging task for manual design. To contend with the challenges, we propose Automated Physics-Informed Neural Networks (AutoPINN), a framework that enables the automated design of PINNs by combining AutoML and PINNs. Specifically, we first tailor a search space that allows finding high-accuracy PINNs for PEC internal parameter estimation. We then propose a resource-aware search strategy to explore the search space to find the best PINN model under different resource constraints. We experimentally demonstrate that AutoPINN is able to find more accurate PINN models than human-designed, state-of-the-art PINN models using fewer resources.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
The foundation models have recently shown excellent performance on a variety of downstream tasks in computer vision. However, most existing vision foundation models simply focus on image-level pretraining and adpation, which are limited for dynamic and complex video-level understanding tasks. To fill the gap, we present general video foundation models, InternVideo, by taking advantage of both generative and discriminative self-supervised video learning. Specifically, InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives, and selectively coordinates video representations of these two complementary frameworks in a learnable manner to boost various video applications. Without bells and whistles, InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications. Especially, our methods can obtain 91.1% and 77.2% top-1 accuracy on the challenging Kinetics-400 and Something-Something V2 benchmarks, respectively. All of these results effectively show the generality of our InternVideo for video understanding. The code will be released at https://github.com/OpenGVLab/InternVideo .
translated by 谷歌翻译
Stereo images, containing left and right view images with disparity, are utilized in solving low-vision tasks recently, e.g., rain removal and super-resolution. Stereo image restoration methods usually obtain better performance than monocular methods by learning the disparity between dual views either implicitly or explicitly. However, existing stereo rain removal methods still cannot make full use of the complementary information between two views, and we find it is because: 1) the rain streaks have more complex distributions in directions and densities, which severely damage the complementary information and pose greater challenges; 2) the disparity estimation is not accurate enough due to the imperfect fusion mechanism for the features between two views. To overcome such limitations, we propose a new \underline{Stereo} \underline{I}mage \underline{R}ain \underline{R}emoval method (StereoIRR) via sufficient interaction between two views, which incorporates: 1) a new Dual-view Mutual Attention (DMA) mechanism which generates mutual attention maps by taking left and right views as key information for each other to facilitate cross-view feature fusion; 2) a long-range and cross-view interaction, which is constructed with basic blocks and dual-view mutual attention, can alleviate the adverse effect of rain on complementary information to help the features of stereo images to get long-range and cross-view interaction and fusion. Notably, StereoIRR outperforms other related monocular and stereo image rain removal methods on several datasets. Our codes and datasets will be released.
translated by 谷歌翻译
In neural architecture search (NAS) methods based on latent space optimization (LSO), a deep generative model is trained to embed discrete neural architectures into a continuous latent space. In this case, different optimization algorithms that operate in the continuous space can be implemented to search neural architectures. However, the optimization of latent variables is challenging for gradient-based LSO since the mapping from the latent space to the architecture performance is generally non-convex. To tackle this problem, this paper develops a convexity regularized latent space optimization (CR-LSO) method, which aims to regularize the learning process of latent space in order to obtain a convex architecture performance mapping. Specifically, CR-LSO trains a graph variational autoencoder (G-VAE) to learn the continuous representations of discrete architectures. Simultaneously, the learning process of latent space is regularized by the guaranteed convexity of input convex neural networks (ICNNs). In this way, the G-VAE is forced to learn a convex mapping from the architecture representation to the architecture performance. Hereafter, the CR-LSO approximates the performance mapping using the ICNN and leverages the estimated gradient to optimize neural architecture representations. Experimental results on three popular NAS benchmarks show that CR-LSO achieves competitive evaluation results in terms of both computational complexity and architecture performance.
translated by 谷歌翻译
Perceiving and manipulating objects in a generalizable way has been actively studied by the computer vision and robotics communities, where cross-category generalizable manipulation skills are highly desired yet underexplored. In this work, we propose to learn such generalizable perception and manipulation via Generalizable and Actionable Parts (GAParts). By identifying and defining 9 GAPart classes (e.g. buttons, handles, etc), we show that our part-centric approach allows our method to learn object perception and manipulation skills from seen object categories and directly generalize to unseen categories. Following the GAPart definition, we construct a large-scale part-centric interactive dataset, GAPartNet, where rich, part-level annotations (semantics, poses) are provided for 1166 objects and 8489 part instances. Based on GAPartNet, we investigate three cross-category tasks: part segmentation, part pose estimation, and part-based object manipulation. Given the large domain gaps between seen and unseen object categories, we propose a strong 3D segmentation method from the perspective of domain generalization by integrating adversarial learning techniques. Our method outperforms all existing methods by a large margin, no matter on seen or unseen categories. Furthermore, with part segmentation and pose estimation results, we leverage the GAPart pose definition to design part-based manipulation heuristics that can generalize well to unseen object categories in both simulation and real world. The dataset and code will be released.
translated by 谷歌翻译
This paper is about an extraordinary phenomenon. Suppose we don't use any low-light images as training data, can we enhance a low-light image by deep learning? Obviously, current methods cannot do this, since deep neural networks require to train their scads of parameters using copious amounts of training data, especially task-related data. In this paper, we show that in the context of fundamental deep learning, it is possible to enhance a low-light image without any task-related training data. Technically, we propose a new, magical, effective and efficient method, termed \underline{Noi}se \underline{SE}lf-\underline{R}egression (NoiSER), which learns a gray-world mapping from Gaussian distribution for low-light image enhancement (LLIE). Specifically, a self-regression model is built as a carrier to learn a gray-world mapping during training, which is performed by simply iteratively feeding random noise. During inference, a low-light image is directly fed into the learned mapping to yield a normal-light one. Extensive experiments show that our NoiSER is highly competitive to current task-related data based LLIE models in terms of quantitative and visual results, while outperforming them in terms of the number of parameters, training time and inference speed. With only about 1K parameters, NoiSER realizes about 1 minute for training and 1.2 ms for inference with 600$\times$400 resolution on RTX 2080 Ti. Besides, NoiSER has an inborn automated exposure suppression capability and can automatically adjust too bright or too dark, without additional manipulations.
translated by 谷歌翻译
Low-light stereo image enhancement (LLSIE) is a relatively new task to enhance the quality of visually unpleasant stereo images captured in dark conditions. So far, very few studies on deep LLSIE have been explored due to certain challenging issues, i.e., the task has not been well addressed, and current methods clearly suffer from two shortages: 1) insufficient cross-view interaction; 2) lacking long-range dependency for intra-view learning. In this paper, we therefore propose a novel LLSIE model, termed \underline{Suf}ficient C\underline{r}oss-View \underline{In}teraction Network (SufrinNet). To be specific, we present sufficient inter-view interaction module (SIIM) to enhance the information exchange across views. SIIM not only discovers the cross-view correlations at different scales, but also explores the cross-scale information interaction. Besides, we present a spatial-channel information mining block (SIMB) for intra-view feature extraction, and the benefits are twofold. One is the long-range dependency capture to build spatial long-range relationship, and the other is expanded channel information refinement that enhances information flow in channel dimension. Extensive experiments on Flickr1024, KITTI 2012, KITTI 2015 and Middlebury datasets show that our method obtains better illumination adjustment and detail recovery, and achieves SOTA performance compared to other related methods. Our codes, datasets and models will be publicly available.
translated by 谷歌翻译