This paper is about an extraordinary phenomenon. Suppose we don't use any low-light images as training data, can we enhance a low-light image by deep learning? Obviously, current methods cannot do this, since deep neural networks require to train their scads of parameters using copious amounts of training data, especially task-related data. In this paper, we show that in the context of fundamental deep learning, it is possible to enhance a low-light image without any task-related training data. Technically, we propose a new, magical, effective and efficient method, termed \underline{Noi}se \underline{SE}lf-\underline{R}egression (NoiSER), which learns a gray-world mapping from Gaussian distribution for low-light image enhancement (LLIE). Specifically, a self-regression model is built as a carrier to learn a gray-world mapping during training, which is performed by simply iteratively feeding random noise. During inference, a low-light image is directly fed into the learned mapping to yield a normal-light one. Extensive experiments show that our NoiSER is highly competitive to current task-related data based LLIE models in terms of quantitative and visual results, while outperforming them in terms of the number of parameters, training time and inference speed. With only about 1K parameters, NoiSER realizes about 1 minute for training and 1.2 ms for inference with 600$\times$400 resolution on RTX 2080 Ti. Besides, NoiSER has an inborn automated exposure suppression capability and can automatically adjust too bright or too dark, without additional manipulations.
translated by 谷歌翻译
在弱光条件下获得的图像将严重影响图像的质量。解决较差的弱光图像质量的问题可以有效地提高图像的视觉质量,并更好地改善计算机视觉的可用性。此外,它在许多领域都具有非常重要的应用。本文提出了基于视网膜的Deanet,以增强弱光图像。它将图像的频率信息和内容信息结合到三个子网络中:分解网络,增强网络和调整网络。这三个子网络分别用于分解,变形,对比度增强和细节保存,调整和图像产生。我们的模型对于所有低光图像都具有良好的良好结果。该模型对公共数据集进行了培训,实验结果表明,就视力和质量而言,我们的方法比现有的最新方法更好。
translated by 谷歌翻译
基于深度学习的低光图像增强方法通常需要巨大的配对训练数据,这对于在现实世界的场景中捕获是不切实际的。最近,已经探索了无监督的方法来消除对成对训练数据的依赖。然而,由于没有前衣,它们在不同的现实情景中表现得不稳定。为了解决这个问题,我们提出了一种基于先前(HEP)的有效预期直方图均衡的无监督的低光图像增强方法。我们的作品受到了有趣的观察,即直方图均衡增强图像的特征图和地面真理是相似的。具体而言,我们制定了HEP,提供了丰富的纹理和亮度信息。嵌入一​​个亮度模块(LUM),它有助于将低光图像分解为照明和反射率图,并且反射率图可以被视为恢复的图像。然而,基于Retinex理论的推导揭示了反射率图被噪声污染。我们介绍了一个噪声解剖学模块(NDM),以解除反射率图中的噪声和内容,具有不配对清洁图像的可靠帮助。通过直方图均衡的先前和噪声解剖,我们的方法可以恢复更精细的细节,更有能力抑制现实世界低光场景中的噪声。广泛的实验表明,我们的方法对最先进的无监督的低光增强算法有利地表现出甚至与最先进的监督算法匹配。
translated by 谷歌翻译
低光图像增强(LLIE)旨在提高在环境中捕获的图像的感知或解释性,较差的照明。该领域的最新进展由基于深度学习的解决方案为主,其中许多学习策略,网络结构,丢失功能,培训数据等已被采用。在本文中,我们提供了全面的调查,以涵盖从算法分类到开放问题的各个方面。为了检查现有方法的概括,我们提出了一个低光图像和视频数据集,其中图像和视频是在不同的照明条件下的不同移动电话的相机拍摄的。除此之外,我们首次提供统一的在线平台,涵盖许多流行的LLIE方法,其中结果可以通过用户友好的Web界面生产。除了在公开和我们拟议的数据集上对现有方法的定性和定量评估外,我们还验证了他们在黑暗中的脸部检测中的表现。这项调查与拟议的数据集和在线平台一起作为未来研究的参考来源和促进该研究领域的发展。拟议的平台和数据集以及收集的方法,数据集和评估指标是公开可用的,并将经常更新。
translated by 谷歌翻译
增强低光图像的质量在许多图像处理和多媒体应用中起着非常重要的作用。近年来,已经开发出各种深入的学习技术来解决这一具有挑战性的任务。典型的框架是同时估计照明和反射率,但它们忽略了在特征空间中封装的场景级上下文信息,从而导致许多不利的结果,例如,细节损失,颜色不饱和,工件等。为了解决这些问题,我们开发了一个新的上下文敏感的分解网络架构,用于利用空间尺度上的场景级上下文依赖项。更具体地说,我们构建了一种双流估计机制,包括反射率和照明估计网络。我们设计一种新的上下文敏感的分解连接来通过结合物理原理来桥接双流机制。进一步构建了空间改变的照明引导,用于实现照明组件的边缘感知平滑性特性。根据不同的培训模式,我们构建CSDNet(配对监督)和CSDGAN(UNS满分监督),以充分评估我们设计的架构。我们在七个测试基准测试中测试我们的方法,以进行大量的分析和评估的实验。由于我们设计的上下文敏感的分解连接,我们成功实现了出色的增强结果,这完全表明我们对现有最先进的方法的优势。最后,考虑到高效的实际需求,我们通过减少通道数来开发轻量级CSDNet(命名为LiteCsdnet)。此外,通过为这两个组件共享编码器,我们获得更轻量级的版本(短路SLITECSDNET)。 SLITECSDNET只包含0.0301M参数,但达到与CSDNET几乎相同的性能。
translated by 谷歌翻译
With the development of convolutional neural networks, hundreds of deep learning based dehazing methods have been proposed. In this paper, we provide a comprehensive survey on supervised, semi-supervised, and unsupervised single image dehazing. We first discuss the physical model, datasets, network modules, loss functions, and evaluation metrics that are commonly used. Then, the main contributions of various dehazing algorithms are categorized and summarized. Further, quantitative and qualitative experiments of various baseline methods are carried out. Finally, the unsolved issues and challenges that can inspire the future research are pointed out. A collection of useful dehazing materials is available at \url{https://github.com/Xiaofeng-life/AwesomeDehazing}.
translated by 谷歌翻译
The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network. Our method trains a lightweight deep network, DCE-Net, to estimate pixel-wise and high-order curves for dynamic range adjustment of a given image. The curve estimation is specially designed, considering pixel value range, monotonicity, and differentiability. Zero-DCE is appealing in its relaxed assumption on reference images, i.e., it does not require any paired or unpaired data during training. This is achieved through a set of carefully formulated non-reference loss functions, which implicitly measure the enhancement quality and drive the learning of the network. Our method is efficient as image enhancement can be achieved by an intuitive and simple nonlinear curve mapping. Despite its simplicity, we show that it generalizes well to diverse lighting conditions. Extensive experiments on various benchmarks demonstrate the advantages of our method over state-of-the-art methods qualitatively and quantitatively. Furthermore, the potential benefits of our Zero-DCE to face detection in the dark are discussed.
translated by 谷歌翻译
在弱照明条件下捕获的图像可能会严重降低图像质量。求解一系列低光图像的降解可以有效地提高图像的视觉质量和高级视觉任务的性能。在本研究中,提出了一种新的基于RETINEX的实际网络(R2RNET),用于低光图像增强,其包括三个子网:DECOM-NET,DENOISE-NET和RELIGHT-NET。这三个子网分别用于分解,去噪,对比增强和细节保存。我们的R2RNET不仅使用图像的空间信息来提高对比度,还使用频率信息来保留细节。因此,我们的模型对所有退化的图像进行了更强大的结果。与在合成图像上培训的最先前的方法不同,我们收集了第一个大型现实世界配对的低/普通灯图像数据集(LSRW数据集),以满足培训要求,使我们的模型具有更好的现实世界中的泛化性能场景。对公共数据集的广泛实验表明,我们的方法在定量和视觉上以现有的最先进方法优于现有的现有方法。此外,我们的结果表明,通过使用我们在低光条件下的方法获得的增强的结果,可以有效地改善高级视觉任务(即面部检测)的性能。我们的代码和LSRW数据集可用于:https://github.com/abcdef2000/r2rnet。
translated by 谷歌翻译
低灯图像挑战人类的感知和计算机视觉算法。使算法强大地为计算摄影和计算机视觉应用(如实时检测和分割)开明低光图像至关重要。本文提出了一种语义引导的零射低亮增强网络,其在没有配对图像,未配对数据集和分段注释的情况下培训。首先,我们使用深度可分离卷积设计增强因子提取网络,以便有效估计低光图像的像素方向缺点。其次,我们提出了一种经常性图像增强网络,以具有价格实惠的模型尺寸来逐渐增强低光图像。最后,我们介绍了一个无监督的语义分割网络,用于保留密集增强期间的语义信息。基准数据集和低光视频的广泛实验表明,我们的模型优于先前的最先进的定性和定量。我们进一步探讨了所提出的低光检测和分割方法的好处。
translated by 谷歌翻译
在本文中,我们使第一个基准测试精力阐述在低光增强中使用原始图像的优越性,并开发一种以更灵活和实用的方式利用原始图像的新颖替代路线。通过对典型图像处理管道进行充分考虑的启发,我们受到启发,开发了一种新的评估框架,分解增强模型(FEM),它将原始图像的属性分解成可测量的因素,并提供了探索原始图像属性的工具凭经验影响增强性能。经验基金基准结果表明,在元数据中记录的数据和曝光时间的线性起作用最关键的作用,这在将SRGB图像作为输入中的方法采取各种措施中提出了不同的性能增益。通过从基准测试结果中获得的洞察力,开发了一种原始曝光增强网络(REENET),这在实际应用中的实际应用中的优缺点与仅在原始图像中的原始应用中的优点和可接近之间的权衡培训阶段。 Reenet将SRGB图像投影到线性原域中,以应用相应的原始图像的约束,以减少建模培训的难度。之后,在测试阶段,我们的reenet不依赖于原始图像。实验结果不仅展示了Reenet到最先进的SRGB的方法以及原始指导和所有组件的有效性。
translated by 谷歌翻译
在不完美亮度条件下采取的照片的视觉质量可以通过多种因素来退化,例如,低亮度,成像噪声,颜色失真等。目前的低灯图像增强型号仅关注较低亮度的改善,或者简单地处理整体的所有退化因子,导致次优性能。在本文中,我们建议将增强模型分成两个顺序阶段。第一阶段侧重于基于像素明智的非线性映射来提高场景可见性。第二阶段专注于通过抑制其余变性因素来改善外观保真度。解耦模型有助于两个方面的增强。一方面,整个低光增强可以分为两个更容易的子组织。第一个只旨在增强可见性。它还有助于弥合低光和常光图像之间的大强度间隙。以这种方式,第二个子摊可以成形为局部外观调整。另一方面,由于从第一阶段学习的参数矩阵意识到亮度分布和场景结构,因此可以作为互补信息结合到第二阶段。在实验中,与其他低光图像增强模型相比,我们的模型在定性和定量比较方面表现出最先进的性能。此外,消融研究还验证了我们模型在多个方面的有效性,例如模型结构和损失功能。训练有素的模型可在https://github.com/hanxuhfut/decoupled-low-light-image-enhancement获得。
translated by 谷歌翻译
在低灯条件下捕获的图像遭受低可视性和各种成像伪影,例如真实噪音。现有的监督启示算法需要大量的像素对齐的训练图像对,这很难在实践中准备。虽然弱监督或无人监督的方法可以缓解这些挑战,但不使用配对的训练图像,由于缺乏相应的监督,一些现实世界的文物不可避免地被错误地放大。在本文中,而不是使用完美的对齐图像进行培训,我们创造性地使用未对准的现实世界图像作为指导,这很容易收集。具体地,我们提出了一个交叉图像解剖线程(CIDN),以分别提取来自低/常光图像的交叉图像亮度和图像特定内容特征。基于此,CIDN可以同时校正特征域中的亮度和抑制图像伪像,其在很大程度上将鲁棒性增加到像素偏移。此外,我们收集了一个新的低光图像增强数据集,包括具有现实世界腐败的未对准培训图像。实验结果表明,我们的模型在新建议的数据集和其他流行的低光数据集中实现了最先进的表演。
translated by 谷歌翻译
低光图像增强是一个固有的主观过程,其目标随用户的美学而变化。在此激励的情况下,已经研究了几种个性化的增强方法。但是,基于这些技术中用户偏好的增强过程是不可见的,即“黑匣子”。在这项工作中,我们为低光图像提出了一个可理解的无监督个性化增强器(Iupenhancer),该图像建立了与三个用户友好型属性(亮度,色彩和噪音)有关的低光与未配对的参考图像之间的相关性。 。拟议的IUP增强剂接受了这些相关性的指导和相应的无监督损失函数的培训。我们的IUP-Enhancer不是“黑匣子”过程,而是带有上述属性的可理解增强过程。广泛的实验表明,所提出的算法会产生竞争性的定性和定量结果,同时保持出色的灵活性和可伸缩性。可以通过单个/多个参考,交叉归因引用或仅调整参数的个性化来验证。
translated by 谷歌翻译
A self-supervised adaptive low-light video enhancement (SALVE) method is proposed in this work. SALVE first conducts an effective Retinex-based low-light image enhancement on a few key frames of an input low-light video. Next, it learns mappings from the low- to enhanced-light frames via Ridge regression. Finally, it uses these mappings to enhance the remaining frames in the input video. SALVE is a hybrid method that combines components from a traditional Retinex-based image enhancement method and a learning-based method. The former component leads to a robust solution which is easily adaptive to new real-world environments. The latter component offers a fast, computationally inexpensive and temporally consistent solution. We conduct extensive experiments to show the superior performance of SALVE. Our user study shows that 87% of participants prefer SALVE over prior work.
translated by 谷歌翻译
水下图像不可避免地会受到颜色失真和对比度减少的影响。基于统计的方法,例如白平衡和直方图拉伸,试图调整颜色通道的不平衡和狭窄的强度分布,因此性能有限。最近,基于深度学习的方法取得了令人鼓舞的结果。但是,所涉及的架构复杂化和高计算成本可能会阻碍其在实用的约束平台中的部署。受上述作品的启发,我们提出了一个统计学的轻量级水下图像增强网络(USLN)。具体而言,我们首先开发一个双统计的白平衡模块,该模块可以学会使用平均图像和最大图像来补偿每个特定像素的颜色失真。然后是一个多色空间拉伸模块,以适应RGB,HSI和实验室颜色空间中的直方图分布。广泛的实验表明,在统计数据的指导下,USLN大大降低了所需的网络容量(超过98%)并实现最先进的性能。代码和相关资源可在https://github.com/deepxzy/usln上获得。
translated by 谷歌翻译
One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data. Underwater images are difficult to capture and are often of poor quality due to the distortion and loss of colour and contrast in water. This makes it difficult to train supervised deep learning models on large and diverse datasets, which can limit the model's performance. In this paper, we explore an alternative approach to supervised underwater image enhancement. Specifically, we propose a novel unsupervised underwater image enhancement framework that employs a conditional variational autoencoder (cVAE) to train a deep learning model with probabilistic adaptive instance normalization (PAdaIN) and statistically guided multi-colour space stretch that produces realistic underwater images. The resulting framework is composed of a U-Net as a feature extractor and a PAdaIN to encode the uncertainty, which we call UDnet. To improve the visual quality of the images generated by UDnet, we use a statistically guided multi-colour space stretch module that ensures visual consistency with the input image and provides an alternative to training using a ground truth image. The proposed model does not need manual human annotation and can learn with a limited amount of data and achieves state-of-the-art results on underwater images. We evaluated our proposed framework on eight publicly-available datasets. The results show that our proposed framework yields competitive performance compared to other state-of-the-art approaches in quantitative as well as qualitative metrics. Code available at https://github.com/alzayats/UDnet .
translated by 谷歌翻译
水下杂质的光吸收和散射导致水下较差的水下成像质量。现有的基于数据驱动的基于数据的水下图像增强(UIE)技术缺乏包含各种水下场景和高保真参考图像的大规模数据集。此外,不同颜色通道和空间区域的不一致衰减不完全考虑提升增强。在这项工作中,我们构建了一个大规模的水下图像(LSUI)数据集,包括5004个图像对,并报告了一个U形变压器网络,其中变压器模型首次引入UIE任务。 U形变压器与通道 - 方面的多尺度特征融合变压器(CMSFFT)模块和空间全局功能建模变压器(SGFMT)模块集成在一起,可使用更多地加强网络对色频道和空间区域的关注严重衰减。同时,为了进一步提高对比度和饱和度,在人类视觉原理之后,设计了组合RGB,实验室和LCH颜色空间的新型损失函数。可用数据集的广泛实验验证了报告的技术的最先进性能,具有超过2dB的优势。
translated by 谷歌翻译
在过去几年中,深度卷积神经网络在低光图像增强中取得了令人印象深刻的成功。深度学习方法大多通过堆叠网络结构并加深网络深度来提高特征提取的能力。在单个时导致更多的运行时间成本为了减少推理时间,在完全提取本地特征和全局特征的同时,我们通过SGN定期,我们提出了基于广泛的自我引导网络(Absgn)的现实世界低灯图像增强。策略是一种广泛的策略处理不同曝光的噪音。所提出的网络被许多主流基准验证.Aditional实验结果表明,所提出的网络优于最先进的低光图像增强解决方案。
translated by 谷歌翻译
This paper presents a new neural network for enhancing underexposed photos. Instead of directly learning an image-to-image mapping as previous work, we introduce intermediate illumination in our network to associate the input with expected enhancement result, which augments the network's capability to learn complex photographic adjustment from expert-retouched input/output image pairs. Based on this model, we formulate a loss function that adopts constraints and priors on the illumination, prepare a new dataset of 3,000 underexposed image pairs, and train the network to effectively learn a rich variety of adjustment for diverse lighting conditions. By these means, our network is able to recover clear details, distinct contrast, and natural color in the enhancement results. We perform extensive experiments on the benchmark MIT-Adobe FiveK dataset and our new dataset, and show that our network is effective to deal with previously challenging images.
translated by 谷歌翻译
移动设备上的低光成像通常是由于不足的孔径穿过相对较小的孔径而挑战,导致信噪比较低。以前的大多数关于低光图像处理的作品仅关注单个任务,例如照明调整,颜色增强或删除噪声;或在密切依赖于从特定的摄像机模型中收集的长时间曝光图像对的关节照明调整和降解任务上,因此,这些方法在需要摄像机特定的关节增强和恢复的现实环境中不太实用且可推广。为了解决这个问题,在本文中,我们提出了一个低光图像处理框架,该框架可以执行关节照明调整,增强色彩和降解性。考虑到模型特异性数据收集的难度和捕获图像的超高定义,我们设计了两个分支:系数估计分支以及关节增强和denoising分支。系数估计分支在低分辨率空间中起作用,并预测通过双边学习增强的系数,而关节增强和去核分支在全分辨率空间中工作,并逐步执行关节增强和脱氧。与现有方法相反,我们的框架在适应另一个摄像机模型时不需要回忆大量数据,这大大减少了微调我们用于实际使用方法所需的努力。通过广泛的实验,与当前的最新方法相比,我们在现实世界中的低光成像应用中证明了它的巨大潜力。
translated by 谷歌翻译