Physics-Informed Neural Networks (PINNs) have recently been proposed to solve scientific and engineering problems, where physical laws are introduced into neural networks as prior knowledge. With the embedded physical laws, PINNs enable the estimation of critical parameters, which are unobservable via physical tools, through observable variables. For example, Power Electronic Converters (PECs) are essential building blocks for the green energy transition. PINNs have been applied to estimate the capacitance, which is unobservable during PEC operations, using current and voltage, which can be observed easily during operations. The estimated capacitance facilitates self-diagnostics of PECs. Existing PINNs are often manually designed, which is time-consuming and may lead to suboptimal performance due to a large number of design choices for neural network architectures and hyperparameters. In addition, PINNs are often deployed on different physical devices, e.g., PECs, with limited and varying resources. Therefore, it requires designing different PINN models under different resource constraints, making it an even more challenging task for manual design. To contend with the challenges, we propose Automated Physics-Informed Neural Networks (AutoPINN), a framework that enables the automated design of PINNs by combining AutoML and PINNs. Specifically, we first tailor a search space that allows finding high-accuracy PINNs for PEC internal parameter estimation. We then propose a resource-aware search strategy to explore the search space to find the best PINN model under different resource constraints. We experimentally demonstrate that AutoPINN is able to find more accurate PINN models than human-designed, state-of-the-art PINN models using fewer resources.
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
在本文中,我们利用了最近的物理信息神经网络(PINN)的进步,并开发了一种基于通用的Pinn的框架,以评估多状态系统(MSS)的可靠性。提议的方法包括两个主要步骤。在第一步中,我们将MS的可靠性评估作为使用Pinn框架的机器学习问题。构建具有两个单独损耗组的前馈神经网络以编码由MS中的常微分方程(ODES)管理的初始条件和状态转换。接下来,从多任务学习的角度来看,我们解决了Pinn中的背部传播梯度大小的高不平衡问题。特别是,我们将损失函数中的每个元素视为个别任务,采用名为Projecting冲突渐变(PCGRAD)的梯度手术方法,其中任务的渐变将投影到具有冲突梯度的任何其他任务的常规平面上。梯度投影操作显着降低了训练销时梯度干扰引起的有害影响,从而将PINN的收敛速度加速到高精度解决方案到MSS可靠性评估。通过提出的基于Pinn的框架,我们在几乎不受时间或依赖状态转换和系统尺度从小到介质时,研究其对MSS可靠性评估的应用程序的应用。结果表明,基于Pinn的框架在MSS可靠性评估中显示了通用和显着性能,并且Pinn中的PCGrad掺入了溶液质量和收敛速度的大量提高。
translated by 谷歌翻译
科学和工程学中的一个基本问题是设计最佳的控制政策,这些政策将给定的系统转向预期的结果。这项工作提出了同时求解给定系统状态和最佳控制信号的控制物理信息的神经网络(控制PINNS),在符合基础物理定律的一个阶段框架中。先前的方法使用两个阶段的框架,该框架首先建模然后按顺序控制系统。相比之下,控制PINN将所需的最佳条件纳入其体系结构和损耗函数中。通过解决以下开环的最佳控制问题来证明控制PINN的成功:(i)一个分析问题,(ii)一维热方程,以及(iii)二维捕食者捕食者问题。
translated by 谷歌翻译
We demonstrate a Physics-informed Neural Network (PINN) based model for real-time health monitoring of a heat exchanger, that plays a critical role in improving energy efficiency of thermal power plants. A hypernetwork based approach is used to enable the domain-decomposed PINN learn the thermal behavior of the heat exchanger in response to dynamic boundary conditions, eliminating the need to re-train. As a result, we achieve orders of magnitude reduction in inference time in comparison to existing PINNs, while maintaining the accuracy on par with the physics-based simulations. This makes the approach very attractive for predictive maintenance of the heat exchanger in digital twin environments.
translated by 谷歌翻译
Structural failures are often caused by catastrophic events such as earthquakes and winds. As a result, it is crucial to predict dynamic stress distributions during highly disruptive events in real time. Currently available high-fidelity methods, such as Finite Element Models (FEMs), suffer from their inherent high complexity. Therefore, to reduce computational cost while maintaining accuracy, a Physics Informed Neural Network (PINN), PINN-Stress model, is proposed to predict the entire sequence of stress distribution based on Finite Element simulations using a partial differential equation (PDE) solver. Using automatic differentiation, we embed a PDE into a deep neural network's loss function to incorporate information from measurements and PDEs. The PINN-Stress model can predict the sequence of stress distribution in almost real-time and can generalize better than the model without PINN.
translated by 谷歌翻译
This paper introduces the use of evolutionary algorithms for solving differential equations. The solution is obtained by optimizing a deep neural network whose loss function is defined by the residual terms from the differential equations. Recent studies have used stochastic gradient descent (SGD) variants to train these physics-informed neural networks (PINNs), but these methods can struggle to find accurate solutions due to optimization challenges. When solving differential equations, it is important to find the globally optimum parameters of the network, rather than just finding a solution that works well during training. SGD only searches along a single gradient direction, so it may not be the best approach for training PINNs with their accompanying complex optimization landscapes. In contrast, evolutionary algorithms perform a parallel exploration of different solutions in order to avoid getting stuck in local optima and can potentially find more accurate solutions. However, evolutionary algorithms can be slow, which can make them difficult to use in practice. To address this, we provide a set of five benchmark problems with associated performance metrics and baseline results to support the development of evolutionary algorithms for enhanced PINN training. As a baseline, we evaluate the performance and speed of using the widely adopted Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for solving PINNs. We provide the loss and training time for CMA-ES run on TensorFlow, and CMA-ES and SGD run on JAX (with GPU acceleration) for the five benchmark problems. Our results show that JAX-accelerated evolutionary algorithms, particularly CMA-ES, can be a useful approach for solving differential equations. We hope that our work will support the exploration and development of alternative optimization algorithms for the complex task of optimizing PINNs.
translated by 谷歌翻译
Designing convolutional neural networks (CNN) for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant efforts have been dedicated to design and improve mobile CNNs on all dimensions, it is very difficult to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated mobile neural architecture search (MNAS) approach, which explicitly incorporate model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike previous work, where latency is considered via another, often inaccurate proxy (e.g., FLOPS), our approach directly measures real-world inference latency by executing the model on mobile phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that encourages layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our MnasNet achieves 75.2% top-1 accuracy with 78ms latency on a Pixel phone, which is 1.8× faster than MobileNetV2 [29] with 0.5% higher accuracy and 2.3× faster than NASNet [36] with 1.2% higher accuracy. Our MnasNet also achieves better mAP quality than MobileNets for COCO object detection. Code is at https://github.com/tensorflow/tpu/ tree/master/models/official/mnasnet.
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
物理知识的神经网络(PINN)最近成为基于部分微分方程模型的广泛工程和科学问题的有前途的深度学习应用。然而,有证据表明,梯度下降的PINN训练显示出病理和梯度流动动力学的刚度。在本文中,我们建议使用杂交粒子群优化和梯度下降方法来训练PINN。所得的PSO-PINN算法不仅减轻了经过标准梯度下降训练的PINN的不希望的行为,而且还为PINN提供了合奏方法,可以提供具有量化不确定性的强大预测的可能性。线性和非线性PDE模型的实验证明了所提出的方法的功效。
translated by 谷歌翻译
随着计算能力的增加和机器学习的进步,基于数据驱动的学习方法在解决PDE方面引起了极大的关注。物理知识的神经网络(PINN)最近出现并成功地在各种前进和逆PDES问题中取得了成功,其优异的特性,例如灵活性,无网格解决方案和无监督的培训。但是,它们的收敛速度较慢和相对不准确的解决方案通常会限制其在许多科学和工程领域中的更广泛适用性。本文提出了一种新型的数据驱动的PDES求解器,物理知识的细胞表示(Pixel),优雅地结合了经典数值方法和基于学习的方法。我们采用来自数值方法的网格结构,以提高准确性和收敛速度并克服PINN中呈现的光谱偏差。此外,所提出的方法在PINN中具有相同的好处,例如,使用相同的优化框架来解决前进和逆PDE问题,并很容易通过现代自动分化技术强制执行PDE约束。我们为原始Pinn所努力的各种具有挑战性的PDE提供了实验结果,并表明像素达到了快速收敛速度和高精度。
translated by 谷歌翻译
Sensors in cyber-physical systems often capture interconnected processes and thus emit correlated time series (CTS), the forecasting of which enables important applications. The key to successful CTS forecasting is to uncover the temporal dynamics of time series and the spatial correlations among time series. Deep learning-based solutions exhibit impressive performance at discerning these aspects. In particular, automated CTS forecasting, where the design of an optimal deep learning architecture is automated, enables forecasting accuracy that surpasses what has been achieved by manual approaches. However, automated CTS solutions remain in their infancy and are only able to find optimal architectures for predefined hyperparameters and scale poorly to large-scale CTS. To overcome these limitations, we propose SEARCH, a joint, scalable framework, to automatically devise effective CTS forecasting models. Specifically, we encode each candidate architecture and accompanying hyperparameters into a joint graph representation. We introduce an efficient Architecture-Hyperparameter Comparator (AHC) to rank all architecture-hyperparameter pairs, and we then further evaluate the top-ranked pairs to select a final result. Extensive experiments on six benchmark datasets demonstrate that SEARCH not only eliminates manual efforts but also is capable of better performance than manually designed and existing automatically designed CTS models. In addition, it shows excellent scalability to large CTS.
translated by 谷歌翻译
本文介绍了一种用于开发面向控制的建筑物的散热模型的数据驱动建模方法。这些型号是通过降低能耗成本的目标而开发的,同时控制建筑物的室内温度,在所需的舒适度限制内。结合白/灰盒物理模型的可解释性和神经网络的表现力,我们提出了一种物理知识的神经网络方法,用于这种建模任务。除了测量的数据和构建参数之外,我们将通过管理这些建筑物的热行为的底层物理编码神经网络。因此,实现了由物理学引导的模型,有助于建模室温和功耗的时间演化以及隐藏状态,即建筑物热质量的温度。这项工作的主要研究贡献是:(1)我们提出了两种物理学的变种信息,为机构的控制定向热建模任务提供了通知的神经网络架构,(2)我们展示这些架构是数据效率的,需要更少培训数据与传统的非物理知识的神经网络相比,(3)我们表明这些架构比传统的神经网络实现更准确的预测,用于更长的预测视野。我们使用模拟和实际字数据测试所提出的架构的预测性能,以演示(2)和(3),并显示所提出的物理知识的神经网络架构可以用于该控制导向的建模问题。
translated by 谷歌翻译
Solute transport in porous media is relevant to a wide range of applications in hydrogeology, geothermal energy, underground CO2 storage, and a variety of chemical engineering systems. Due to the complexity of solute transport in heterogeneous porous media, traditional solvers require high resolution meshing and are therefore expensive computationally. This study explores the application of a mesh-free method based on deep learning to accelerate the simulation of solute transport. We employ Physics-informed Neural Networks (PiNN) to solve solute transport problems in homogeneous and heterogeneous porous media governed by the advection-dispersion equation. Unlike traditional neural networks that learn from large training datasets, PiNNs only leverage the strong form mathematical models to simultaneously solve for multiple dependent or independent field variables (e.g., pressure and solute concentration fields). In this study, we construct PiNN using a periodic activation function to better represent the complex physical signals (i.e., pressure) and their derivatives (i.e., velocity). Several case studies are designed with the intention of investigating the proposed PiNN's capability to handle different degrees of complexity. A manual hyperparameter tuning method is used to find the best PiNN architecture for each test case. Point-wise error and mean square error (MSE) measures are employed to assess the performance of PiNNs' predictions against the ground truth solutions obtained analytically or numerically using the finite element method. Our findings show that the predictions of PiNN are in good agreement with the ground truth solutions while reducing computational complexity and cost by, at least, three orders of magnitude.
translated by 谷歌翻译
最近在科学机器学习的工作已经开发出所谓的物理信息的神经网络(Pinn)模型。典型方法是将物理域知识纳入经验丢失功能的软限制,并使用现有的机器学习方法来培训模型。我们展示了,虽然现有的Pinn方法可以学习良好的模型,但它们可以轻松地未能学习相关的物理现象,甚至更复杂的问题。特别是,我们分析了众多不同的普遍物理兴趣的情况,包括使用对流,反应和扩散运营商学习微分方程。我们提供了证据表明Pinns中的软正规化,涉及基于PDE的差分运营商,可以引入许多微妙的问题,包括使问题更加不良。重要的是,我们表明,这些可能的失败模式不是由于NN架构中缺乏富有效力,但Pinn的设置使得损失景观很难优化。然后,我们描述了两个有希望的解决方案来解决这些故障模式。第一种方法是使用课程正则化,其中Pinn的丢失项从简单的PDE正则化开始,并且随着NN训练而变得逐渐变得更加复杂。第二种方法是将问题构成为序列到序列的学习任务,而不是学习一次性地预测整个时空。广泛的测试表明,与常规Pinn训练相比,我们可以通过这些方法实现最多1-2个数量级。
translated by 谷歌翻译
在本文中,我们提出了用于求解非线性微分方程(NDE)的神经网络的物理知情训练(PIAT)。众所周知,神经网络的标准培训会导致非平滑函数。对抗训练(AT)是针对对抗攻击的既定防御机制,这也可能有助于使解决方案平滑。 AT包括通过扰动增强训练迷你批量,使网络输出不匹配所需的输出对手。与正式AT仅依靠培训数据不同,在这里,我们使用对抗网络体系结构中的自动差异来以非线性微分方程的形式编码管理物理定律。我们将PIAT与PIAT进行了比较,以指示我们方法在求解多达10个维度方面的有效性。此外,我们提出了重量衰减和高斯平滑,以证明PIAT的优势。代码存储库可从https://github.com/rohban-lab/piat获得。
translated by 谷歌翻译
在本文中,我们演示并调查了一些挑战,这些挑战阻碍了使用物理知识的神经网络解决复杂问题的方式。特别是,我们可视化受过训练的模型的损失景观,并在存在物理学的情况下对反向传播梯度进行灵敏度分析。我们的发现表明,现有的方法产生了难以导航的高度非凸损失景观。此外,高阶PDE污染了可能阻碍或防止收敛的反向传播梯度。然后,我们提出了一种新的方法,该方法绕过了高阶PDE操作员的计算并减轻反向传播梯度的污染。为此,我们降低了解决方案搜索空间的维度,并通过非平滑解决方案促进学习问题。我们的配方还提供了一种反馈机制,可帮助我们的模型适应地专注于难以学习的领域的复杂区域。然后,我们通过调整Lagrange乘数方法来提出一个无约束的二重问题。我们运用我们的方法来解决由线性和非线性PDE控制的几个具有挑战性的基准问题。
translated by 谷歌翻译
科学机器学习(Sciml)的出现在思路科学领域开辟了一个新的领域,通过在基于物理和数据建模的界面的界面中开发方法。为此,近年来介绍了物理知识的神经网络(Pinns),通过在所谓的焊点上纳入物理知识来应对培训数据的稀缺。在这项工作中,我们研究了Pinns关于用于强制基于物理惩罚术语的配偶数量的预测性能。我们表明Pinns可能会失败,学习通过定义来满足物理惩罚术语的琐碎解决方案。我们制定了一种替代的采样方法和新的惩罚术语,使我们能够在具有竞争性结果的数据稀缺设置中纠正Pinns中的核心问题,同时减少最多80 \%的基准问题所需的搭配数量。
translated by 谷歌翻译
由于在许多领域的无与伦比的成功,例如计算机视觉,自然语言处理,推荐系统以及最近在模拟多物理问题和预测非线性动力学系统方面,深度学习引起了人们的关注。但是,建模和预测混乱系统的动态仍然是一个开放的研究问题,因为训练深度学习模型需要大数据,在许多情况下,这并不总是可用的。可以通过从模拟结果获得的其他信息以及执行混乱系统的物理定律来培训这样的深度学习者。本文考虑了极端事件及其动态,并提出了基于深层神经网络的优雅模型,称为基于知识的深度学习(KDL)。我们提出的KDL可以通过直接从动力学及其微分方程中对真实和模拟数据进行联合培训来学习控制混乱系统的复杂模式。这些知识被转移到模型和预测现实世界中的混乱事件,表现出极端行为。我们通过在三个实际基准数据集上进行评估来验证模型的效率:El Nino海面温度,San Juan登革热病毒感染和BJ {\ o} rn {\ o} ya每日降水,所有这些都受极端事件的控制'动态。利用对极端事件和基于物理的损失功能的先验知识来领导神经网络学习,我们即使在小型数据制度中也可以确保身体一致,可推广和准确的预测。
translated by 谷歌翻译