最近的作品显示了深度学习模型在词汇(IV)场景文本识别中的巨大成功。但是,在现实情况下,播音外(OOV)单词非常重要,SOTA识别模型通常在OOV设置上表现较差。受到直觉的启发,即学习的语言先验有限的OOV预言性,我们设计了一个名为Vision语言自适应相互解码器(VLAMD)的框架,以部分解决OOV问题。 VLAMD由三个主要谱系组成。首先,我们建立了一个基于注意力的LSTM解码器,具有两个适应性合并的仅视觉模块,可产生视觉平衡的主分支。其次,我们添加了一个基于辅助查询的自动回归变压器解码头,以进行通用的视觉和语言先验表示学习。最后,我们将这两种设计与双向培训相结合,以进行更多样化的语言建模,并进行相互的顺序解码以获得强烈的结果。我们的方法在IV+OOV和OOV设置上分别实现了70.31 \%和59.61 \%单词的准确性,分别在ECCV 2022 TIE TIE Workshop上的OOV-ST挑战的裁剪单词识别任务上,我们在这两个设置上都获得了第一名。
translated by 谷歌翻译
在本文中,我们提出了一个新的基于聚类的主动学习框架,即使用基于聚类的采样(ALCS)的主动学习,以解决标记数据的短缺。ALCS采用基于密度的聚类方法来探索数据集群结构,而无需详尽的参数调整。引入了基于双簇边界的样本查询过程,以提高对高度重叠类分类的学习绩效。此外,我们制定了一种有效的多样性探索策略,以解决查询样品之间的冗余。我们的实验结果证明了ALCS方法的疗效。
translated by 谷歌翻译
标准卷积神经网络(CNN)设计很少专注于明确捕获各种功能以增强网络性能的重要性。相反,大多数现有方法遵循增加或调整网络深度和宽度的间接方法,这在许多情况下显着提高了计算成本。受生物视觉系统的启发,我们提出了一种多样化和自适应的卷积网络(DA $ ^ {2} $ - net),它使任何前锋CNN能够明确地捕获不同的功能,并自适应地选择并强调最具信息性的功能有效地提高网络的性能。 DA $ ^ {2} $ - NET会引入可忽略不计的计算开销,它旨在与任何CNN架构轻松集成。我们广泛地评估了基准数据集的DA $ ^ {2} $ - 网上,包括CNN架构的CNN100,SVHN和Imagenet,包括CNN100。实验结果显示DA $ ^ {2} $ - NET提供了具有非常最小的计算开销的显着性能改进。
translated by 谷歌翻译
在本文中,我们开发了在无人驾驶系统(UUS)交通管理(UTM)的背景下的电动垂直起飞和降落车辆(EVTOL)的广义模拟框架,并在城市空运流行率(UAM)的概念下。与大多数现有的研究不同,所提出的框架结合了UTM和EVTOL的利用来开发现实的UAM测试平台。为此,我们首先增强了现有的UTM模拟器以模拟现实世界的UAM环境。然后,代替使用简化的Evotl模型,采用了一个现实的EVTOL设计工具,即Suave,并引入了扩张子模块,以弥合UTM模拟器和Suave Evtol性能评估工具之间的间隙,以详细说明完整的任务配置文件。基于开发的仿真框架,进行了实验,并提出了结果以分析evtols在UAM环境中的性能。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Learning feature interactions is the key to success for the large-scale CTR prediction and recommendation. In practice, handcrafted feature engineering usually requires exhaustive searching. In order to reduce the high cost of human efforts in feature engineering, researchers propose several deep neural networks (DNN)-based approaches to learn the feature interactions in an end-to-end fashion. However, existing methods either do not learn both vector-wise interactions and bit-wise interactions simultaneously, or fail to combine them in a controllable manner. In this paper, we propose a new model, xDeepInt, based on a novel network architecture called polynomial interaction network (PIN) which learns higher-order vector-wise interactions recursively. By integrating subspace-crossing mechanism, we enable xDeepInt to balance the mixture of vector-wise and bit-wise feature interactions at a bounded order. Based on the network architecture, we customize a combined optimization strategy to conduct feature selection and interaction selection. We implement the proposed model and evaluate the model performance on three real-world datasets. Our experiment results demonstrate the efficacy and effectiveness of xDeepInt over state-of-the-art models. We open-source the TensorFlow implementation of xDeepInt: https://github.com/yanyachen/xDeepInt.
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译
Interview has been regarded as one of the most crucial step for recruitment. To fully prepare for the interview with the recruiters, job seekers usually practice with mock interviews between each other. However, such a mock interview with peers is generally far away from the real interview experience: the mock interviewers are not guaranteed to be professional and are not likely to behave like a real interviewer. Due to the rapid growth of online recruitment in recent years, recruiters tend to have online interviews, which makes it possible to collect real interview data from real interviewers. In this paper, we propose a novel application named EZInterviewer, which aims to learn from the online interview data and provides mock interview services to the job seekers. The task is challenging in two ways: (1) the interview data are now available but still of low-resource; (2) to generate meaningful and relevant interview dialogs requires thorough understanding of both resumes and job descriptions. To address the low-resource challenge, EZInterviewer is trained on a very small set of interview dialogs. The key idea is to reduce the number of parameters that rely on interview dialogs by disentangling the knowledge selector and dialog generator so that most parameters can be trained with ungrounded dialogs as well as the resume data that are not low-resource. Evaluation results on a real-world job interview dialog dataset indicate that we achieve promising results to generate mock interviews. With the help of EZInterviewer, we hope to make mock interview practice become easier for job seekers.
translated by 谷歌翻译