有效地发现满足各种性能要求的分子可以显着受益药物发现行业。由于搜索整个化学空间是不可行的,因此最近的作品采用了用于目标定向分子产生的生成模型。它们倾向于利用迭代过程,优化每次迭代时的分子发生模型的参数,以产生有望的分子以进一步验证。利用评估来评估每次迭代的产生的分子,为模型优化提供方向。然而,最先前的作品需要大量的昂贵且耗时的评估,例如湿法实验和分子动态模拟,导致缺乏实用性。为了减少迭代过程中的评估,我们提出了一种在潜在空间中的成本效益的演化策略,其优化了分子潜在载波。我们采用预先训练的分子生成模型来映射潜伏和观察空间,利用大规模未标记的分子来学习化学知识。为了进一步减少昂贵的评估数量,我们将一个筛选器预先介绍为评估的代理。我们对多种优化任务进行了广泛的实验,将建议的框架与几种先进技术进行比较,表明所提出的框架更好地实现了更好的评估。
translated by 谷歌翻译
Ramp merging is a typical application of cooperative intelligent transportation system (C-ITS). Vehicle trajectories perceived by roadside sensors are importation complement to the limited visual field of on-board perception. Vehicle tracking and trajectory denoising algorithm is proposed in this paper to take full advantage of roadside cameras for vehicle trajectory and speed profile estimation. Dynamic speed guidance algorithm is proposed to help on-ramp vehicles to merge into mainline smoothly, even in non-cooperative environment where mainline vehicles are not expected to slow down to accommodate on-ramp vehicles. On-site experiments were taken out in a merging area of Hangzhou Belt Highway to testify our prototype system, and simulation analysis shows our proposed algorithm can achieve significant fuel savings during the ramp merging process.
translated by 谷歌翻译
Most regularized tensor regression research focuses on tensors predictors with scalars responses or vectors predictors to tensors responses. We consider the sparse low rank tensor on tensor regression where predictors $\mathcal{X}$ and responses $\mathcal{Y}$ are both high-dimensional tensors. By demonstrating that the general inner product or the contracted product on a unit rank tensor can be decomposed into standard inner products and outer products, the problem can be simply transformed into a tensor to scalar regression followed by a tensor decomposition. So we propose a fast solution based on stagewise search composed by contraction part and generation part which are optimized alternatively. We successfully demonstrate our method can out perform current methods in terms of accuracy, predictors selection by effectively incorporating the structural information.
translated by 谷歌翻译
While pre-trained Chinese language models have demonstrated impressive performance on a wide range of NLP tasks, the Chinese Spell Checking (CSC) task remains a challenge. Previous research has explored using information such as glyphs and phonetics to improve the ability to distinguish misspelled characters, with good results. However, the generalization ability of these models is not well understood: it is unclear whether they incorporate glyph-phonetic information and, if so, whether this information is fully utilized. In this paper, we aim to better understand the role of glyph-phonetic information in the CSC task and suggest directions for improvement. Additionally, we propose a new, more challenging, and practical setting for testing the generalizability of CSC models. All code is made publicly available.
translated by 谷歌翻译
We present pyRDDLGym, a Python framework for auto-generation of OpenAI Gym environments from RDDL declerative description. The discrete time step evolution of variables in RDDL is described by conditional probability functions, which fits naturally into the Gym step scheme. Furthermore, since RDDL is a lifted description, the modification and scaling up of environments to support multiple entities and different configurations becomes trivial rather than a tedious process prone to errors. We hope that pyRDDLGym will serve as a new wind in the reinforcement learning community by enabling easy and rapid development of benchmarks due to the unique expressive power of RDDL. By providing explicit access to the model in the RDDL description, pyRDDLGym can also facilitate research on hybrid approaches for learning from interaction while leveraging model knowledge. We present the design and built-in examples of pyRDDLGym, and the additions made to the RDDL language that were incorporated into the framework.
translated by 谷歌翻译
The success of state-of-the-art deep neural networks heavily relies on the presence of large-scale labelled datasets, which are extremely expensive and time-consuming to annotate. This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN and labelling the generated images with an automatic annotator. In particular, we formulate the annotator learning as a learning-to-learn problem. Given a pre-trained GAN, the annotator learns to label object parts in a set of randomly generated images such that a part segmentation model trained on these synthetic images with their predicted labels obtains low segmentation error on a small validation set of manually labelled images. We further reduce this nested-loop optimization problem to a simple gradient matching problem and efficiently solve it with an iterative algorithm. We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images. Our method is evaluated with semi-supervised part segmentation tasks and significantly outperforms other semi-supervised competitors when the amount of labelled examples is extremely limited.
translated by 谷歌翻译
In recent years, generative adversarial networks (GANs) have been an actively studied topic and shown to successfully produce high-quality realistic images in various domains. The controllable synthesis ability of GAN generators suggests that they maintain informative, disentangled, and explainable image representations, but leveraging and transferring their representations to downstream tasks is largely unexplored. In this paper, we propose to distill knowledge from GAN generators by squeezing and spanning their representations. We squeeze the generator features into representations that are invariant to semantic-preserving transformations through a network before they are distilled into the student network. We span the distilled representation of the synthetic domain to the real domain by also using real training data to remedy the mode collapse of GANs and boost the student network performance in a real domain. Experiments justify the efficacy of our method and reveal its great significance in self-supervised representation learning. Code is available at https://github.com/yangyu12/squeeze-and-span.
translated by 谷歌翻译
Due to the ambiguity of homophones, Chinese Spell Checking (CSC) has widespread applications. Existing systems typically utilize BERT for text encoding. However, CSC requires the model to account for both phonetic and graphemic information. To adapt BERT to the CSC task, we propose a token-level self-distillation contrastive learning method. We employ BERT to encode both the corrupted and corresponding correct sentence. Then, we use contrastive learning loss to regularize corrupted tokens' hidden states to be closer to counterparts in the correct sentence. On three CSC datasets, we confirmed our method provides a significant improvement above baselines.
translated by 谷歌翻译
最近利用多模式数据旨在建立面部动作单元(AU)检测模型的研究。但是,由于多模式数据的异质性,多模式表示学习成为主要挑战之一。一方面,很难通过仅通过一个特征提取器从多模式中提取相关特征,另一方面,先前的研究并未完全探索多模式融合策略的潜力。例如,早期融合通常需要在推理期间存在所有方式,而晚期融合和中间融合则增加了特征学习的网络大小。与晚期融合的大量工作相反,早期融合探索渠道信息的作品很少。本文提出了一个新型的多模式网络,称为多模式通道混合(MCM),作为一种预训练的模型,以学习强大的表示形式,以促进多模式融合。我们在自动面部动作单元检测的下游任务上评估学习的表示形式。具体而言,它是一个单个流编码器网络,该网络在早期融合中使用频道混合模块,在下游检测任务中仅需要一种模态。我们还利用蒙版的VIT编码器从融合图像中学习特征,并使用两个VIT解码器重建两个模式。我们已经在两个公共数据集(称为BP4D和DISFA)上进行了广泛的实验,以评估所提出的多模式框架的有效性和鲁棒性。结果表明我们的方法是可比或优越的,它与最新的基线方法相当。
translated by 谷歌翻译
训练后量化(PTQ)由于其在部署量化的神经网络方面的便利性而引起了越来越多的关注。 Founding是量化误差的主要来源,仅针对模型权重进行了优化,而激活仍然使用圆形至最终操作。在这项工作中,我们首次证明了精心选择的激活圆形方案可以提高最终准确性。为了应对激活舍入方案动态性的挑战,我们通过简单的功能适应圆形边框,以在推理阶段生成圆形方案。边界函数涵盖了重量误差,激活错误和传播误差的影响,以消除元素误差的偏差,从而进一步受益于模型的准确性。我们还使边境意识到全局错误,以更好地拟合不同的到达激活。最后,我们建议使用Aquant框架来学习边界功能。广泛的实验表明,与最先进的作品相比,Aquant可以通过可忽略不计的开销来取得明显的改进,并将Resnet-18的精度提高到2位重量和激活后训练后量化下的精度最高60.3 \%。
translated by 谷歌翻译