最近利用多模式数据旨在建立面部动作单元(AU)检测模型的研究。但是,由于多模式数据的异质性,多模式表示学习成为主要挑战之一。一方面,很难通过仅通过一个特征提取器从多模式中提取相关特征,另一方面,先前的研究并未完全探索多模式融合策略的潜力。例如,早期融合通常需要在推理期间存在所有方式,而晚期融合和中间融合则增加了特征学习的网络大小。与晚期融合的大量工作相反,早期融合探索渠道信息的作品很少。本文提出了一个新型的多模式网络,称为多模式通道混合(MCM),作为一种预训练的模型,以学习强大的表示形式,以促进多模式融合。我们在自动面部动作单元检测的下游任务上评估学习的表示形式。具体而言,它是一个单个流编码器网络,该网络在早期融合中使用频道混合模块,在下游检测任务中仅需要一种模态。我们还利用蒙版的VIT编码器从融合图像中学习特征,并使用两个VIT解码器重建两个模式。我们已经在两个公共数据集(称为BP4D和DISFA)上进行了广泛的实验,以评估所提出的多模式框架的有效性和鲁棒性。结果表明我们的方法是可比或优越的,它与最新的基线方法相当。
translated by 谷歌翻译
Can we leverage the audiovisual information already present in video to improve self-supervised representation learning? To answer this question, we study various pretraining architectures and objectives within the masked autoencoding framework, motivated by the success of similar methods in natural language and image understanding. We show that we can achieve significant improvements on audiovisual downstream classification tasks, surpassing the state-of-the-art on VGGSound and AudioSet. Furthermore, we can leverage our audiovisual pretraining scheme for multiple unimodal downstream tasks using a single audiovisual pretrained model. We additionally demonstrate the transferability of our representations, achieving state-of-the-art audiovisual results on Epic Kitchens without pretraining specifically for this dataset.
translated by 谷歌翻译
Facial action units (FAUs) are critical for fine-grained facial expression analysis. Although FAU detection has been actively studied using ideally high quality images, it was not thoroughly studied under heavily occluded conditions. In this paper, we propose the first occlusion-robust FAU recognition method to maintain FAU detection performance under heavy occlusions. Our novel approach takes advantage of rich information from the latent space of masked autoencoder (MAE) and transforms it into FAU features. Bypassing the occlusion reconstruction step, our model efficiently extracts FAU features of occluded faces by mining the latent space of a pretrained masked autoencoder. Both node and edge-level knowledge distillation are also employed to guide our model to find a mapping between latent space vectors and FAU features. Facial occlusion conditions, including random small patches and large blocks, are thoroughly studied. Experimental results on BP4D and DISFA datasets show that our method can achieve state-of-the-art performances under the studied facial occlusion, significantly outperforming existing baseline methods. In particular, even under heavy occlusion, the proposed method can achieve comparable performance as state-of-the-art methods under normal conditions.
translated by 谷歌翻译
We present Masked Audio-Video Learners (MAViL) to train audio-visual representations. Our approach learns with three complementary forms of self-supervision: (1) reconstruction of masked audio and video input data, (2) intra- and inter-modal contrastive learning with masking, and (3) self-training by reconstructing joint audio-video contextualized features learned from the first two objectives. Pre-training with MAViL not only enables the model to perform well in audio-visual classification and retrieval tasks but also improves representations of each modality in isolation, without using information from the other modality for fine-tuning or inference. Empirically, MAViL sets a new state-of-the-art on AudioSet (53.1 mAP) and VGGSound (67.1% accuracy). For the first time, a self-supervised audio-visual model outperforms ones that use external supervision on these benchmarks. Code will be available soon.
translated by 谷歌翻译
通过深度学习技术的开花,完全有监督的基于骨架的动作识别取得了巨大进步。但是,这些方法需要足够的标记数据,这不容易获得。相比之下,基于自我监督的骨骼的动作识别引起了更多的关注。通过利用未标记的数据,可以学会更多可概括的功能来减轻过度拟合的问题并减少大规模标记的培训数据的需求。受到MAE的启发,我们提出了一个空间式蒙面的自动编码器框架,用于基于3D骨架的自我监管的动作识别(Skeletonmae)。在MAE的掩蔽和重建管道之后,我们利用基于骨架的编码器变压器体系结构来重建蒙版的骨架序列。一种新颖的掩蔽策略,称为时空掩蔽,是根据骨架序列的联合级别和框架级别引入的。这种预训练策略使编码器输出可推广的骨骼特征具有空间和时间依赖性。给定未掩盖的骨架序列,编码器用于动作识别任务。广泛的实验表明,我们的骨架达到了出色的性能,并优于NTU RGB+D和NTU RGB+D 120数据集的最新方法。
translated by 谷歌翻译
本文显示屏蔽的自动化器(MAE)是可扩展的自我监督学习者,用于计算机愿景。我们的MAE方法很简单:我们掩盖输入图像的随机补丁并重建缺失像素。它基于两个核心设计。首先,我们开发一个不对称的编码器解码器架构,其中编码器仅在掩码的可见子集(没有掩码令牌)上,以及重量解码器,该重量解码器从潜像和掩码令牌重建原始图像。其次,我们发现掩蔽了高比例的输入图像,例如,75%,产生非凡和有意义的自我监督任务。耦合这两种设计使我们能够有效且有效地培训大型模型:我们加速培训(3倍或更多)并提高准确性。我们可扩展的方法允许学习概括的高容量模型:例如,Vanilla Vit-Maxim模型在使用Imagenet-1K数据的方法中实现最佳准确性(87.8%)。下游任务中的转移性能优于监督预培训并显示有前途的缩放行为。
translated by 谷歌翻译
基于变压器的体系结构已在各种视觉域(最著名的图像和视频)中变得更具竞争力。虽然先前的工作已经孤立地研究了这些模式,但拥有一个共同的体系结构表明,人们可以训练单个统一模型以多种视觉方式。事先尝试进行统一建模通常使用针对视觉任务量身定制的体系结构,或与单个模态模型相比获得较差的性能。在这项工作中,我们表明可以使用蒙版的自动编码来在图像和视频上训练简单的视觉变压器,而无需任何标记的数据。该单个模型学习了与图像和视频基准上的单模式表示相当或更好的视觉表示,同时使用了更简单的体系结构。特别是,我们的单一预算模型可以进行审核,以在ImageNet上获得86.5%的速度,而在挑战性的事物V2视频基准测试中,可以实现75.3%的范围。此外,可以通过丢弃90%的图像和95%的视频补丁来学习该模型,从而实现非常快速的训练。
translated by 谷歌翻译
基于变压器的自我监督表示方法学习方法从未标记的数据集中学习通用功能,以提供有用的网络初始化参数,用于下游任务。最近,基于掩盖3D点云数据的局部表面斑块的自我监督学习的探索还不足。在本文中,我们提出了3D点云表示学习中的蒙版自动编码器(缩写为MAE3D),这是一种新颖的自动编码范式,用于自我监督学习。我们首先将输入点云拆分为补丁,然后掩盖其中的一部分,然后使用我们的补丁嵌入模块提取未掩盖的补丁的功能。其次,我们采用贴片的MAE3D变形金刚学习点云补丁的本地功能以及补丁之间的高级上下文关系,并完成蒙版补丁的潜在表示。我们将点云重建模块与多任务损失一起完成,从而完成不完整的点云。我们在Shapenet55上进行了自我监督的预训练,并使用点云完成前文本任务,并在ModelNet40和ScanObjectnn(PB \ _t50 \ _RS,最难的变体)上微调预训练的模型。全面的实验表明,我们的MAE3D从Point Cloud补丁提取的本地功能对下游分类任务有益,表现优于最先进的方法($ 93.4 \%\%\%\%$和$ 86.2 \%$ $分类精度)。
translated by 谷歌翻译
自我监督学习(SSL)通过利用不需要标签的借口任务来学习有用的归纳偏见。 SSL的未标记性质使得对整个幻灯片组织病理学图像(WSIS)尤为重要,在该图片级的人类注释很难。蒙面自动编码器(MAE)是一种适合数字病理学的SSL方法,因为它不需要阴性采样,并且几乎不需要数据增加。但是,自然图像和数字病理图像之间的域移动需要进一步研究贴片级WSIS的MA​​E。在本文中,我们研究了组织病理学中MAE的几种设计选择。此外,我们引入了一个多模式MAE(MMAE),该MAE(MMAE)利用了苏木精和曙红(H&E)染色的WSI的特定组成性。我们在公共补丁级数据集NCT-CRC-HE-100K上进行了实验。结果表明,MMAE架构的表现优于监督基线和其他最先进的SSL技术,用于八类组织表型任务,仅利用100个标记的样品进行微调。我们的代码可从https://github.com/wisdomikezogwo/mmae_pathology获得
translated by 谷歌翻译
我们提出了引导蒙面的自动编码器(bootmae),这是一种新的视觉BERT预训练方法。 Bootmae用两个核心设计改进了原始的蒙版自动编码器(MAE):1)动量编码器,该动量编码器可作为额外的BERT预测目标提供在线功能; 2)试图降低编码器的压力以记住目标特定信息的靶向解码器。第一个设计的动机是通过观察到的,即使用预定的MAE提取特征,因为掩盖令牌的BERT预测目标可以实现更好的预训练性能。因此,我们与原始的MAE编码器并行添加了一个动量编码器,该编码器通过将其自己的表示作为BERT预测目标来引导预处理性能。在第二个设计中,我们将特定于目标的信息(例如,未掩盖贴片的像素值)直接传达到解码器中,以减少记住目标特定信息的编码器的压力。因此,编码器专注于语义建模,这是BERT预训练的目的,并且不需要浪费其在记住与预测目标相关的未掩盖令牌的信息时的能力。通过广泛的实验,我们的Bootmae在ImageNet-1k上获得了$ 84.2 \%$ $ $ $+0.8 \%$在同一预训练时期。 Bootmae还获得了$+1.0 $ MIOU在ADE20K上的语义细分和$+1.3 $ box ap,$+1.4 $+1.4 $ bask ap改进对象检测和可可数据集上的细分。代码在https://github.com/lightdxy/bootmae上发布。
translated by 谷歌翻译
Video-language pre-training is crucial for learning powerful multi-modal representation. However, it typically requires a massive amount of computation. In this paper, we develop SMAUG, an efficient pre-training framework for video-language models. The foundation component in SMAUG is masked autoencoders. Different from prior works which only mask textual inputs, our masking strategy considers both visual and textual modalities, providing a better cross-modal alignment and saving more pre-training costs. On top of that, we introduce a space-time token sparsification module, which leverages context information to further select only "important" spatial regions and temporal frames for pre-training. Coupling all these designs allows our method to enjoy both competitive performances on text-to-video retrieval and video question answering tasks, and much less pre-training costs by 1.9X or more. For example, our SMAUG only needs about 50 NVIDIA A6000 GPU hours for pre-training to attain competitive performances on these two video-language tasks across six popular benchmarks.
translated by 谷歌翻译
Cross-modality magnetic resonance (MR) image synthesis aims to produce missing modalities from existing ones. Currently, several methods based on deep neural networks have been developed using both source- and target-modalities in a supervised learning manner. However, it remains challenging to obtain a large amount of completely paired multi-modal training data, which inhibits the effectiveness of existing methods. In this paper, we propose a novel Self-supervised Learning-based Multi-scale Transformer Network (SLMT-Net) for cross-modality MR image synthesis, consisting of two stages, \ie, a pre-training stage and a fine-tuning stage. During the pre-training stage, we propose an Edge-preserving Masked AutoEncoder (Edge-MAE), which preserves the contextual and edge information by simultaneously conducting the image reconstruction and the edge generation. Besides, a patch-wise loss is proposed to treat the input patches differently regarding their reconstruction difficulty, by measuring the difference between the reconstructed image and the ground-truth. In this case, our Edge-MAE can fully leverage a large amount of unpaired multi-modal data to learn effective feature representations. During the fine-tuning stage, we present a Multi-scale Transformer U-Net (MT-UNet) to synthesize the target-modality images, in which a Dual-scale Selective Fusion (DSF) module is proposed to fully integrate multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Moreover, we use the pre-trained encoder as a feature consistency module to measure the difference between high-level features of the synthesized image and the ground truth one. Experimental results show the effectiveness of the proposed SLMT-Net, and our model can reliably synthesize high-quality images when the training set is partially unpaired. Our code will be publicly available at https://github.com/lyhkevin/SLMT-Net.
translated by 谷歌翻译
通常需要在大型数据集上进行预训练的视频变压器,以在相对较小的数据集上实现首要性能。在本文中,我们表明视频蒙面的自动编码器(Videomae)是用于自我监督视频预训练(SSVP)的数据效率学习者。我们的启发受到了最近的ImageMae的启发,并提出了具有极高比例的定制视频管掩蔽。这种简单的设计使视频重建成为更具挑战性的自我判断任务,从而鼓励在此预训练过程中提取更有效的视频表示。我们在SSVP上获得了三个重要发现:(1)屏蔽比的比例极高(即90%至95%)仍然可以产生良好的视频性能。在时间上冗余的视频内容比图像更高的掩蔽率。 (2)视频在很小的数据集(即3K-4K视频)上取得了令人印象深刻的结果,而无需使用任何额外的数据。 (3)视频表明,数据质量比SSVP的数据数量更重要。在培训和目标数据集之间的域转移是一个重要问题。值得注意的是,我们与香草VIT的视频在动力学400上可以达到85.8%,在不使用任何额外数据的情况下,在HMDB51上的V2上有75.3%,UCF101的某些东西为75.3%,在UCF101上获得90.8%,HMDB51上的90.8%和61.1%。代码可从https://github.com/mcg-nju/videomae获得。
translated by 谷歌翻译
This paper presents SimVTP: a Simple Video-Text Pretraining framework via masked autoencoders. We randomly mask out the spatial-temporal tubes of input video and the word tokens of input text and then feed them into a unified autencoder to reconstruct the missing pixels and words. Our SimVTP has several properties: 1) Thanks to the unified autoencoder, SimVTP reconstructs the masked signal of one modality with the help from another modality, which implicitly learns the cross-modal alignment between video tubes and text tokens. 2) SimVTP not only benefits from a high video masking ratio (e.g. 90%) due to the temporal redundancy of video, but also needs a high text masking ratio (e.g. 75%), which is much higher than BERT (e.g. 15%), to achieve optimal performance. This is because the aid of video modality makes text reconstruction less challenging, which thus needs a higher mask ratio to make the pretext harder for useful feature learning. 3) Equipping SimVTP with video-text contrastive learning (VTC) and video-text matching (VTM), which are two commonly used cross-modal training strategies, could further improve the transferable performance significantly. 4) SimVTP is dataefficent, e.g., pre-training only on 10% data of WebVid-2M, SimVTP achieves surprisingly good results (43.8 R@1) on MSRVTT, which is far above recent state-of-the-art methods pre-trained on both CC3M and WebVid-2M. We transfer our pre-trained model to various downstream tasks and achieve superior performance. The codes and models will be released at https://github.com/mayuelala/SimVTP.
translated by 谷歌翻译
情绪识别涉及几个现实世界应用。随着可用方式的增加,对情绪的自动理解正在更准确地进行。多模式情感识别(MER)的成功主要依赖于监督的学习范式。但是,数据注释昂贵,耗时,并且由于情绪表达和感知取决于几个因素(例如,年龄,性别,文化),获得具有高可靠性的标签很难。由这些动机,我们专注于MER的无监督功能学习。我们考虑使用离散的情绪,并用作模式文本,音频和视觉。我们的方法是基于成对方式之间的对比损失,是MER文献中的第一次尝试。与现有的MER方法相比,我们的端到端特征学习方法具有几种差异(和优势):i)无监督,因此学习缺乏数据标记成本; ii)它不需要数据空间增强,模态对准,大量批量大小或时期; iii)它仅在推理时应用数据融合; iv)它不需要对情绪识别任务进行预训练的骨干。基准数据集上的实验表明,我们的方法优于MER中应用的几种基线方法和无监督的学习方法。特别是,它甚至超过了一些有监督的MER最先进的。
translated by 谷歌翻译
最近,自我监督的预训练在W.R.T.的各种任务上具有先进的视觉变压器。不同的数据模式,例如图像和3D点云数据。在本文中,我们探讨了基于变压器的3D网格数据分析的学习范式。由于将变压器体系结构应用于新模式通常是非平凡的,因此我们首先将视觉变压器适应3D网格数据处理,即网格变压器。具体而言,我们将网格分为几个非重叠的本地贴片,每个贴片包含相同数量的面部,并使用每个贴片中心点的3D位置形成位置嵌入。受MAE的启发,我们探讨了如何使用基于变压器的结构对3D网格数据进行预训练如何使下游3D网格分析任务受益。我们首先随机掩盖网格的一些补丁,并将损坏的网格馈入网格变形金刚。然后,通过重建蒙版补丁的信息,该网络能够学习网格数据的区分表示。因此,我们命名我们的方法meshmae,可以在网格分析任务(即分类和分割)上产生最先进或可比性的性能。此外,我们还进行了全面的消融研究,以显示我们方法中关键设计的有效性。
translated by 谷歌翻译
Autoregressive language modeling (ALM) have been successfully used in self-supervised pre-training in Natural language processing (NLP). However, this paradigm has not achieved comparable results with other self-supervised approach in computer vision (e.g., contrastive learning, mask image modeling). In this paper, we try to find the reason why autoregressive modeling does not work well on vision tasks. To tackle this problem, we fully analyze the limitation of visual autoregressive methods and proposed a novel stochastic autoregressive image modeling (named SAIM) by the two simple designs. First, we employ stochastic permutation strategy to generate effective and robust image context which is critical for vision tasks. Second, we create a parallel encoder-decoder training process in which the encoder serves a similar role to the standard vision transformer focus on learning the whole contextual information, and meanwhile the decoder predicts the content of the current position, so that the encoder and decoder can reinforce each other. By introducing stochastic prediction and the parallel encoder-decoder, SAIM significantly improve the performance of autoregressive image modeling. Our method achieves the best accuracy (83.9%) on the vanilla ViT-Base model among methods using only ImageNet-1K data. Transfer performance in downstream tasks also show that our model achieves competitive performance.
translated by 谷歌翻译
我们引入了一个自我监督的视觉表示模型BEIT,该模型代表来自图像变压器的双向编码器表示。在Bert在自然语言处理区域中开发后,我们提出了一项掩盖的图像建模任务,以预识视觉变压器。具体而言,每个图像在我们的预训练中具有两个视图,即图像贴片(例如16x16像素)和视觉令牌(即离散令牌)。我们首先将原始图像“将”“令牌化”到视觉令牌中。然后,我们随机掩盖了一些图像补丁并将其喂入骨干变压器中。预训练的目标是根据损坏的图像补丁恢复原始的视觉令牌。在预训练BEIT之后,我们通过将任务层附加在预审计的编码器上,直接通过将任务层附加到下游任务上的模型参数。图像分类和语义分割的实验结果表明,我们的模型通过以前的预训练方法实现了竞争结果。例如,基本大小的BEIT在Imagenet-1K上获得了83.2%的TOP-1精度,并以相同的设置优于划痕DEIT训练(81.8%)。此外,大尺寸的BEIT仅使用Imagenet-1K获得86.3%,即使在Imagenet-22K上进行预训练(85.2%),甚至超过了VIT-L。代码和预估计的模型可在https://aka.ms/beit上找到。
translated by 谷歌翻译
本文研究了基于图像的蒙版自动编码器(MAE)的简单扩展,以从音频谱图中学习自我监督的表示。在MAE中的变压器编码器编码器设计之后,我们的Audio-MAE首先编码具有较高遮罩比的音频谱图斑块,仅通过编码器层馈入非掩盖令牌。然后,解码器重新订购并解码编码的上下文,并用掩码令牌填充,以重建输入频谱图。我们发现将局部窗户注意力纳入解码器是有益的,因为音频谱图在当地时间和频带中高度相关。然后,我们在目标数据集上以较低的掩模比微调编码器。从经验上讲,音频MAE在六个音频和语音分类任务上设定了新的最先进的性能,超过了使用外部监督预训练的其他最新模型。代码和模型将在https://github.com/facebookresearch/audiomae上。
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译