保护用户免受访问恶意网站的是网络运营商的重要管理任务之一。有许多开源和商业产品来控制用户可以访问的网站。最传统的方法是基于黑名单的过滤。这种机制简单但不可扩展,尽管使用模糊匹配技术存在一些增强的方法。其他方法尝试通过从URL字符串中提取功能来使用机器学习(ML)技术。这种方法可以覆盖更广泛的互联网网站区域,但找到了良好的功能需要深入了解网站设计的趋势。最近,出现了使用深度学习(DL)的另一种方法。 DL方法将有助于通过调查大量现有的示例数据自动提取功能。使用此技术,我们可以通过继续教导近期趋势的神经网络模块来构建灵活的过滤决策模块,而没有URL域的任何特定专家知识。在本文中,我们应用了从URL字符串生成特征向量的机械方法。我们实施了我们的方法,并使用了从研究组织和来自着名的网络钓鱼网站信息信息,Phishtank.com获取的现实URL访问历史记录数据。与现有的基于DL的方法相比,我们的方法可以获得2〜3%的更好的准确性。
translated by 谷歌翻译
配置不正确的域名系统(DNS)服务器有时用作数据包反射器,作为DOS或DDOS攻击的一部分。通过监视DNS请求和响应流量,可以逻辑地逻辑地检测作为此活动的结果创建的分组。任何没有相应请求的响应都可以被视为反射消息;然而,检查和跟踪每个DNS数据包是非微不足道的操作。在本文中,我们提出了一种通过使用从少量数据包和机器学习算法构建的DNS服务器特征矩阵用作反射器的DNS服务器的检测机制。当在同一天生成测试和培训数据时,错误DNS服务器检测的F1评分大于0.9,并且对于不用于同一天的培训和测试阶段的数据,超过0.7。
translated by 谷歌翻译
For arbitrary two probability measures on real d-space with given means and variances (covariance matrices), we provide lower bounds for their total variation distance.
translated by 谷歌翻译
我们在随机多臂匪徒问题中使用固定预算和上下文(协变)信息研究最佳武器识别。在观察上下文信息之后,在每一轮中,我们使用过去的观察和当前上下文选择一个治疗臂。我们的目标是确定最好的治疗组,这是一个在上下文分布中被边缘化的最大预期奖励的治疗组,而错误识别的可能性最小。首先,我们为此问题得出半参数的下限,在这里我们将最佳和次优的治疗臂的预期奖励之间的差距视为感兴趣的参数,以及所有其他参数,例如在上下文中的预期奖励,作为滋扰参数。然后,我们开发“上下文RS-AIPW策略”,该策略由随机采样(RS)规则组成,跟踪目标分配比和使用增强反向概率加权(AIPW)估算器的建议规则。我们提出的上下文RS-AIPW策略是最佳的,因为错误识别概率的上限与预算到Infinity时的半参数下限相匹配,并且差距趋于零。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
自动故障检测是许多运动的主要挑战。在比赛中,裁判根据规则在视觉上判断缺点。因此,在判断时确保客观性和公平性很重要。为了解决这个问题,一些研究试图使用传感器和机器学习来自动检测故障。但是,与传感器的附件和设备(例如高速摄像头)相关的问题,这些问题与裁判的视觉判断以及故障检测模型的可解释性相抵触。在这项研究中,我们提出了一个用于非接触测量的断层检测系统。我们使用了根据多个合格裁判的判断进行训练的姿势估计和机器学习模型,以实现公平的错误判断。我们使用智能手机视频在包括东京奥运会的奖牌获得者中,使用了正常比赛的智能手机视频,并有意地走路。验证结果表明,所提出的系统的平均准确度超过90%。我们还透露,机器学习模型根据种族步行规则检测到故障。此外,奖牌获得者的故意故障步行运动与大学步行者不同。这一发现符合更通用的故障检测模型的实现。该代码和数据可在https://github.com/szucchini/racewalk-aijudge上获得。
translated by 谷歌翻译
自我监督学习(SSL)被视为一种非常有前途的方法,对于下游任务的几个语音,高性能。由于SSL模型的参数通常是如此之大,以至于训练和推理需要大量的内存和计算成本,因此希望通过应用诸如知识蒸馏(KD)等压缩方法来生成紧凑的SSL模型,而无需显着性能降解。尽管KD方法能够缩小SSL模型结构的深度和/或宽度,但几乎没有研究如何改变深度和宽度对小脚印模型的内部表示。本文提供了一项解决问题的经验研究。我们在改变结构和KD方法的同时研究了Superb的性能,以保持参数恒定的数量;这使我们能够分析通过改变模型体系结构引入的表示的贡献。实验表明,一定深度对于准确地求解面向内容的任务(例如自动语音识别)至关重要,而在几个面向讲话者的任务上(例如,说话者的身份),必须进行一定宽度对于实现高性能。基于这些观察结果,我们确定了与以前的研究相比,具有更好性能的更高压模型。
translated by 谷歌翻译
大量标记的医学图像对于准确检测异常是必不可少的,但是手动注释是劳动密集型且耗时的。自我监督学习(SSL)是一种培训方法,可以在没有手动注释的情况下学习特定于数据的功能。在医学图像异常检测中已采用了几种基于SSL的模型。这些SSL方法有效地学习了几个特定特定图像的表示形式,例如自然和工业产品图像。但是,由于需要医学专业知识,典型的基于SSL的模型在医疗图像异常检测中效率低下。我们提出了一个基于SSL的模型,该模型可实现基于解剖结构的无监督异常检测(UAD)。该模型采用解剖学意识粘贴(Anatpaste)增强工具。 Anatpaste采用基于阈值的肺部分割借口任务来在正常的胸部X光片上创建异常,用于模型预处理。这些异常类似于实际异常,并帮助模型识别它们。我们在三个OpenSource胸部X光片数据集上评估了我们的模型。我们的模型在曲线(AUC)下展示了92.1%,78.7%和81.9%的模型,在现有UAD模型中最高。这是第一个使用解剖信息作为借口任务的SSL模型。 Anatpaste可以应用于各种深度学习模型和下游任务。它可以通过修复适当的细分来用于其他方式。我们的代码可在以下网址公开获取:https://github.com/jun-sato/anatpaste。
translated by 谷歌翻译
本文提出了一种用于端到端现场文本识别的新颖培训方法。端到端的场景文本识别提供高识别精度,尤其是在使用基于变压器的编码器 - 解码器模型时。要培训高度准确的端到端模型,我们需要为目标语言准备一个大型图像到文本配对数据集。但是,很难收集这些数据,特别是对于资源差的语言。为了克服这种困难,我们所提出的方法利用富裕的大型数据集,以资源丰富的语言,如英语,培训资源差的编码器解码器模型。我们的主要思想是建立一个模型,其中编码器反映了多种语言的知识,而解码器专门从事资源差的语言。为此,所提出的方法通过使用组合资源贫乏语言数据集和资源丰富的语言数据集的多语言数据集来预先培训编码器,以学习用于场景文本识别的语言不变知识。所提出的方法还通过使用资源贫乏语言的数据集预先列举解码器,使解码器更适合资源较差的语言。使用小型公共数据集进行日本现场文本识别的实验证明了该方法的有效性。
translated by 谷歌翻译
本文提出了一种用于对话序列标记的新型知识蒸馏方法。对话序列标签是监督的学习任务,估计目标对话文档中每个话语的标签,并且对于许多诸如对话法估计的许多应用是有用的。准确的标签通常通过分层结构化的大型模型来实现,这些大型模型组成的话语级和对话级网络,分别捕获话语内和话语之间的上下文。但是,由于其型号大小,因此无法在资源受限设备上部署此类模型。为了克服这种困难,我们专注于通过蒸馏了大型和高性能教师模型的知识来列举一个小型模型的知识蒸馏。我们的主要思想是蒸馏知识,同时保持教师模型捕获的复杂环境。为此,所提出的方法,等级知识蒸馏,通过蒸馏来列举小型模型,而不是通过培训模型在教师模型中培训的话语水平和对话级环境的知识模拟教师模型在每个级别的输出。对话法案估算和呼叫场景分割的实验证明了该方法的有效性。
translated by 谷歌翻译