目标变量的日志和平方根变换通常用于预测模型中,以预测未来的销售。这些转换通常会导致更好的性能模型。但是,他们还引入了系统的负面偏见(遗产不足)。在本文中,我们证明了这种偏见的存在,深入研究其根本原因,并引入了两种方法以纠正偏见。我们得出的结论是,提出的偏差校正方法提高了模型性能(最多可提高50%),并为将偏置校正纳入建模工作流程而提高。我们还尝试了“ Tweedie”成本功能家族,这些功能通过直接建模销售来规避转换偏见问题。我们得出的结论是,Tweedie回归在建模销售时迄今为止提供了最佳性能,使其成为使用变换的目标变量的强大替代方案。
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译
Current mainstream object detection methods for large aerial images usually divide large images into patches and then exhaustively detect the objects of interest on all patches, no matter whether there exist objects or not. This paradigm, although effective, is inefficient because the detectors have to go through all patches, severely hindering the inference speed. This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results, enabling a simple and effective solution to object detection in large images. In brief, OAN is a light fully-convolutional network for judging whether each patch contains objects or not, which can be easily integrated into many object detectors and jointly trained with them end-to-end. We extensively evaluate our OAN with five advanced detectors. Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets, meanwhile with consistent accuracy improvements. On extremely large Gaofen-2 images (29200$\times$27620 pixels), our OAN improves the detection speed by 70.5%. Moreover, we extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively, without sacrificing the accuracy. Code is available at https://github.com/Ranchosky/OAN.
translated by 谷歌翻译
Model quantization enables the deployment of deep neural networks under resource-constrained devices. Vector quantization aims at reducing the model size by indexing model weights with full-precision embeddings, i.e., codewords, while the index needs to be restored to 32-bit during computation. Binary and other low-precision quantization methods can reduce the model size up to 32$\times$, however, at the cost of a considerable accuracy drop. In this paper, we propose an efficient framework for ternary quantization to produce smaller and more accurate compressed models. By integrating hyperspherical learning, pruning and reinitialization, our proposed Hyperspherical Quantization (HQ) method reduces the cosine distance between the full-precision and ternary weights, thus reducing the bias of the straight-through gradient estimator during ternary quantization. Compared with existing work at similar compression levels ($\sim$30$\times$, $\sim$40$\times$), our method significantly improves the test accuracy and reduces the model size.
translated by 谷歌翻译
Transformer-based language models have shown strong performance on an array of natural language understanding tasks. However, the question of how these models react to implicit meaning has been largely unexplored. We investigate this using the complement coercion phenomenon, which involves sentences like "The student finished the book about sailing" where the action "reading" is implicit. We compare LMs' surprisal estimates at various critical sentence regions in sentences with and without implicit meaning. Effects associated with recovering implicit meaning were found at a critical region other than where sentences minimally differ. We then use follow-up experiments to factor out potential confounds, revealing different perspectives that offer a richer and more accurate picture.
translated by 谷歌翻译
Deep neural networks (DNNs) are often used for text classification tasks as they usually achieve high levels of accuracy. However, DNNs can be computationally intensive with billions of parameters and large amounts of labeled data, which can make them expensive to use, to optimize and to transfer to out-of-distribution (OOD) cases in practice. In this paper, we propose a non-parametric alternative to DNNs that's easy, light-weight and universal in text classification: a combination of a simple compressor like gzip with a $k$-nearest-neighbor classifier. Without any training, pre-training or fine-tuning, our method achieves results that are competitive with non-pretrained deep learning methods on six in-distributed datasets. It even outperforms BERT on all five OOD datasets, including four low-resource languages. Our method also performs particularly well in few-shot settings where labeled data are too scarce for DNNs to achieve a satisfying accuracy.
translated by 谷歌翻译
Multimodal deep learning has been used to predict clinical endpoints and diagnoses from clinical routine data. However, these models suffer from scaling issues: they have to learn pairwise interactions between each piece of information in each data type, thereby escalating model complexity beyond manageable scales. This has so far precluded a widespread use of multimodal deep learning. Here, we present a new technical approach of "learnable synergies", in which the model only selects relevant interactions between data modalities and keeps an "internal memory" of relevant data. Our approach is easily scalable and naturally adapts to multimodal data inputs from clinical routine. We demonstrate this approach on three large multimodal datasets from radiology and ophthalmology and show that it outperforms state-of-the-art models in clinically relevant diagnosis tasks. Our new approach is transferable and will allow the application of multimodal deep learning to a broad set of clinically relevant problems.
translated by 谷歌翻译
The recent work by (Rieger et al 2021) is concerned with the problem of extracting features from spatio-temporal geophysical signals. The authors introduce the complex rotated MCA (xMCA) to deal with lagged effects and non-orthogonality of the feature representation. This method essentially (1) transforms the signals to a complex plane with the Hilbert transform; (2) applies an oblique (Varimax and Promax) rotation to remove the orthogonality constraint; and (3) performs the eigendecomposition in this complex space (Horel et al, 1984). We argue that this method is essentially a particular case of the method called rotated complex kernel principal component analysis (ROCK-PCA) introduced in (Bueso et al., 2019, 2020), where we proposed the same approach: first transform the data to the complex plane with the Hilbert transform and then apply the varimax rotation, with the only difference that the eigendecomposition is performed in the dual (kernel) Hilbert space. The latter allows us to generalize the xMCA solution by extracting nonlinear (curvilinear) features when nonlinear kernel functions are used. Hence, the solution of xMCA boils down to ROCK-PCA when the inner product is computed in the input data space instead of in the high-dimensional (possibly infinite) kernel Hilbert space to which data has been mapped. In this short correspondence we show theoretical proof that xMCA is a special case of ROCK-PCA and provide quantitative evidence that more expressive and informative features can be extracted when working with kernels; results of the decomposition of global sea surface temperature (SST) fields are shown to illustrate the capabilities of ROCK-PCA to cope with nonlinear processes, unlike xMCA.
translated by 谷歌翻译
We propose a novel model agnostic data-driven reliability analysis framework for time-dependent reliability analysis. The proposed approach -- referred to as MAntRA -- combines interpretable machine learning, Bayesian statistics, and identifying stochastic dynamic equation to evaluate reliability of stochastically-excited dynamical systems for which the governing physics is \textit{apriori} unknown. A two-stage approach is adopted: in the first stage, an efficient variational Bayesian equation discovery algorithm is developed to determine the governing physics of an underlying stochastic differential equation (SDE) from measured output data. The developed algorithm is efficient and accounts for epistemic uncertainty due to limited and noisy data, and aleatoric uncertainty because of environmental effect and external excitation. In the second stage, the discovered SDE is solved using a stochastic integration scheme and the probability failure is computed. The efficacy of the proposed approach is illustrated on three numerical examples. The results obtained indicate the possible application of the proposed approach for reliability analysis of in-situ and heritage structures from on-site measurements.
translated by 谷歌翻译
Autonomous vehicles must often contend with conflicting planning requirements, e.g., safety and comfort could be at odds with each other if avoiding a collision calls for slamming the brakes. To resolve such conflicts, assigning importance ranking to rules (i.e., imposing a rule hierarchy) has been proposed, which, in turn, induces rankings on trajectories based on the importance of the rules they satisfy. On one hand, imposing rule hierarchies can enhance interpretability, but introduce combinatorial complexity to planning; while on the other hand, differentiable reward structures can be leveraged by modern gradient-based optimization tools, but are less interpretable and unintuitive to tune. In this paper, we present an approach to equivalently express rule hierarchies as differentiable reward structures amenable to modern gradient-based optimizers, thereby, achieving the best of both worlds. We achieve this by formulating rank-preserving reward functions that are monotonic in the rank of the trajectories induced by the rule hierarchy; i.e., higher ranked trajectories receive higher reward. Equipped with a rule hierarchy and its corresponding rank-preserving reward function, we develop a two-stage planner that can efficiently resolve conflicting planning requirements. We demonstrate that our approach can generate motion plans in ~7-10 Hz for various challenging road navigation and intersection negotiation scenarios.
translated by 谷歌翻译