Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
We study representation learning for efficient imitation learning over linear systems. In particular, we consider a setting where learning is split into two phases: (a) a pre-training step where a shared $k$-dimensional representation is learned from $H$ source policies, and (b) a target policy fine-tuning step where the learned representation is used to parameterize the policy class. We find that the imitation gap over trajectories generated by the learned target policy is bounded by $\tilde{O}\left( \frac{k n_x}{HN_{\mathrm{shared}}} + \frac{k n_u}{N_{\mathrm{target}}}\right)$, where $n_x > k$ is the state dimension, $n_u$ is the input dimension, $N_{\mathrm{shared}}$ denotes the total amount of data collected for each policy during representation learning, and $N_{\mathrm{target}}$ is the amount of target task data. This result formalizes the intuition that aggregating data across related tasks to learn a representation can significantly improve the sample efficiency of learning a target task. The trends suggested by this bound are corroborated in simulation.
translated by 谷歌翻译
尽管进行了数十年的研究,但现有的导航系统在野外部署时仍然面临现实世界中的挑战,例如在混乱的家庭环境或人类占领的公共场所中。为了解决这个问题,我们提出了一类新的隐式控制政策,将模仿学习的好处与模型预测控制(MPC)的系统约束的强大处理结合在一起。我们的方法称为Performer-MPC,使用了通过表演者提供的视觉上下文嵌入的学习成本函数(一种低级隐式意见变压器)。我们共同训练成本函数并构建依靠它的控制器,有效地端到端解决相应的双层优化问题。我们表明,由此产生的策略通过利用一些在不同挑战的现实世界情景中利用一些专家演示来提高标准MPC绩效。与标准的MPC政策相比,表演者MPC在混乱的环境中实现了40%的目标,而在人类浏览时,社交指标的目标> 65%。
translated by 谷歌翻译
我们在具有Martingale差异噪声的可实现的时间序列框架中学习正方形损失。我们的主要结果是一个快速率的多余风险结合,这表明每当轨迹超收缩条件成立时,依赖数据的最小二乘估计器的风险与燃烧时间后的IID速率订单匹配。相比之下,从依赖数据中学习的许多现有结果都具有有效的样本量,即使在燃烧时间之后,有效的样本量也被基础过程的混合时间降低。此外,我们的结果允许协变量过程表现出远距离相关性,这些相关性大大弱于几何牙齿。我们将这种现象学习称为几乎没有混合的方式,并为其示出了几个示例:$ l^2 $和$ l^{2+\ epsilon} $ norms的有界函数类是等效的,有限的有限态Markov链,各种参数模型,以及一个无限尺寸$ \ ell^2(\ mathbb {n})$椭圆形的广阔家族。通过将我们的主要结果实例化,以使用广义线性模型过渡对非线性动力学的系统识别,我们仅在多项式燃烧时间后获得了几乎最小的最佳超量风险。
translated by 谷歌翻译
在安全关键系统的背景下将模拟缩小到现实差距的动机,我们考虑学习用于未知非线性动力系统的前列鲁棒稳定性证书。符合鲁棒控制的方法,我们考虑添加系统动态的添加剂和Lipschitz有界对手。我们表明,在基础系统上的增量稳定性的合适假设下,学习对抗稳定证明的统计成本相当于持续因素,以学习名义稳定证明。我们的结果铰接在新的导火颤机复杂性的新型界限,这可能是独立的兴趣。据我们所知,这是在对动态系统生成的数据进行对抗性学习时,对样本复杂性限制的第一次表征。我们还提供一种用于近似对抗训练算法的实用算法,并在阻尼摆锤示例上验证我们的发现。
translated by 谷歌翻译
本文涉及专业示范的学习安全控制法。我们假设系统动态和输出测量图的适当模型以及相应的错误界限。我们首先提出强大的输出控制屏障功能(ROCBF)作为保证安全的手段,通过控制安全集的前向不变性定义。然后,我们提出了一个优化问题,以从展示安全系统行为的专家演示中学习RocBF,例如,从人类运营商收集的数据。随着优化问题,我们提供可验证条件,可确保获得的Rocbf的有效性。这些条件在数据的密度和学习函数的LipsChitz和Lipshitz和界限常数上说明,以及系统动态和输出测量图的模型。当ROCBF的参数化是线性的,然后,在温和的假设下,优化问题是凸的。我们在自动驾驶模拟器卡拉验证了我们的调查结果,并展示了如何从RGB相机图像中学习安全控制法。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
With growing sophistication and volume of cyber attacks combined with complex network structures, it is becoming extremely difficult for security analysts to corroborate evidences to identify multistage campaigns on their network. This work develops HeAT (Heated Alert Triage): given a critical indicator of compromise (IoC), e.g., a severe IDS alert, HeAT produces a HeATed Attack Campaign (HAC) depicting the multistage activities that led up to the critical event. We define the concept of "Alert Episode Heat" to represent the analysts opinion of how much an event contributes to the attack campaign of the critical IoC given their knowledge of the network and security expertise. Leveraging a network-agnostic feature set, HeAT learns the essence of analyst's assessment of "HeAT" for a small set of IoC's, and applies the learned model to extract insightful attack campaigns for IoC's not seen before, even across networks by transferring what have been learned. We demonstrate the capabilities of HeAT with data collected in Collegiate Penetration Testing Competition (CPTC) and through collaboration with a real-world SOC. We developed HeAT-Gain metrics to demonstrate how analysts may assess and benefit from the extracted attack campaigns in comparison to common practices where IP addresses are used to corroborate evidences. Our results demonstrates the practical uses of HeAT by finding campaigns that span across diverse attack stages, remove a significant volume of irrelevant alerts, and achieve coherency to the analyst's original assessments.
translated by 谷歌翻译