The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing. While studies over extending 2D StyleGAN to 3D faces have emerged, a corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing. In this paper, we study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures. The problem is ill-posed: innumerable compositions of shape and texture could be rendered to the current image. Furthermore, with the limited capacity of a global latent code, 2D inversion methods cannot preserve faithful shape and texture at the same time when applied to 3D models. To solve this problem, we devise an effective self-training scheme to constrain the learning of inversion. The learning is done efficiently without any real-world 2D-3D training pairs but proxy samples generated from a 3D GAN. In addition, apart from a global latent code that captures the coarse shape and texture information, we augment the generation network with a local branch, where pixel-aligned features are added to faithfully reconstruct face details. We further consider a new pipeline to perform 3D view-consistent editing. Extensive experiments show that our method outperforms state-of-the-art inversion methods in both shape and texture reconstruction quality. Code and data will be released.
translated by 谷歌翻译
Generalist models, which are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model, have been explored recently. Being, hopefully, an alternative to approaching general-purpose AI, existing generalist models are still at an early stage, where modality and task coverage is limited. To empower multi-modal task-scaling and speed up this line of research, we release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction. At the core of OFASys is the idea of decoupling multi-modal task representations from the underlying model implementations. In OFASys, a task involving multiple modalities can be defined declaratively even with just a single line of code. The system automatically generates task plans from such instructions for training and inference. It also facilitates multi-task training for diverse multi-modal workloads. As a starting point, we provide presets of 7 different modalities and 23 highly-diverse example tasks in OFASys, with which we also develop a first-in-kind, single model, OFA+, that can handle text, image, speech, video, and motion data. The single OFA+ model achieves 95% performance in average with only 16% parameters of 15 task-finetuned models, showcasing the performance reliability of multi-modal task-scaling provided by OFASys. Available at https://github.com/OFA-Sys/OFASys
translated by 谷歌翻译
Physics-Informed Neural Networks (PINNs) have recently been proposed to solve scientific and engineering problems, where physical laws are introduced into neural networks as prior knowledge. With the embedded physical laws, PINNs enable the estimation of critical parameters, which are unobservable via physical tools, through observable variables. For example, Power Electronic Converters (PECs) are essential building blocks for the green energy transition. PINNs have been applied to estimate the capacitance, which is unobservable during PEC operations, using current and voltage, which can be observed easily during operations. The estimated capacitance facilitates self-diagnostics of PECs. Existing PINNs are often manually designed, which is time-consuming and may lead to suboptimal performance due to a large number of design choices for neural network architectures and hyperparameters. In addition, PINNs are often deployed on different physical devices, e.g., PECs, with limited and varying resources. Therefore, it requires designing different PINN models under different resource constraints, making it an even more challenging task for manual design. To contend with the challenges, we propose Automated Physics-Informed Neural Networks (AutoPINN), a framework that enables the automated design of PINNs by combining AutoML and PINNs. Specifically, we first tailor a search space that allows finding high-accuracy PINNs for PEC internal parameter estimation. We then propose a resource-aware search strategy to explore the search space to find the best PINN model under different resource constraints. We experimentally demonstrate that AutoPINN is able to find more accurate PINN models than human-designed, state-of-the-art PINN models using fewer resources.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
The substitute-based recommendation is widely used in E-commerce to provide better alternatives to customers. However, existing research typically uses the customer behavior signals like co-view and view-but-purchase-another to capture the substitute relationship. Despite its intuitive soundness, we find that such an approach might ignore the functionality and characteristics of products. In this paper, we adapt substitute recommendation into language matching problem by taking product title description as model input to consider product functionality. We design a new transformation method to de-noise the signals derived from production data. In addition, we consider multilingual support from the engineering point of view. Our proposed end-to-end transformer-based model achieves both successes from offline and online experiments. The proposed model has been deployed in a large-scale E-commerce website for 11 marketplaces in 6 languages. Our proposed model is demonstrated to increase revenue by 19% based on an online A/B experiment.
translated by 谷歌翻译
生成高质量的艺术肖像视频是计算机图形和愿景中的一项重要且理想的任务。尽管已经提出了一系列成功的肖像图像图像模型模型,但这些面向图像的方法在应用于视频(例如固定框架尺寸,面部对齐的要求,缺失的非种族细节和缺失的非种族细节和缺失的要求)时,具有明显的限制。时间不一致。在这项工作中,我们通过引入一个新颖的Vtoonify框架来研究具有挑战性的可控高分辨率肖像视频风格转移。具体而言,Vtoonify利用了Stylegan的中高分辨率层,以基于编码器提取的多尺度内容功能来渲染高质量的艺术肖像,以更好地保留框架细节。由此产生的完全卷积体系结构接受可变大小的视频中的非对齐面孔作为输入,从而有助于完整的面部区域,并在输出中自然动作。我们的框架与现有的基于Stylegan的图像图像模型兼容,以将其扩展到视频化,并继承了这些模型的吸引力,以进行柔性风格控制颜色和强度。这项工作分别为基于收藏和基于示例的肖像视频风格转移而建立在Toonify和DualStylegan的基于Toonify和Dualstylegan的Vtoonify的两个实例化。广泛的实验结果证明了我们提出的VTOONIFY框架对现有方法的有效性在生成具有灵活风格控件的高质量和临时艺术肖像视频方面的有效性。
translated by 谷歌翻译
早期发现焦虑症对于减少精神障碍患者的苦难并改善治疗结果至关重要。基于MHealth平台的焦虑筛查在提高筛选效率和降低筛查成本方面具有特殊实用价值。实际上,受试者的身体和心理评估中移动设备的差异以及数据质量不均匀的问题和现实世界中数据的少量数据量使现有方法无效。因此,我们提出了一个基于时空特征融合的框架,用于非触发焦虑。为了降低数据质量不平衡的影响,我们构建了一个基于“ 3DCNN+LSTM”的特征提取网络,并融合了面部行为和非接触式生理学的时空特征。此外,我们设计了一种相似性评估策略,以解决较小的数据样本量导致模型准确性下降的问题。我们的框架已通过现实世界中的机组数据集进行了验证,并且两个公共数据集UBFC-Phys和Swell-KW。实验结果表明,我们框架的总体性能要比最新的比较方法更好。
translated by 谷歌翻译
先前的软组织操纵研究假设已知抓地点并可以实现目标变形。在操作过程中,约束应该是恒定的,并且软组织周围没有障碍物。为了超越这些假设,在未知的约束下(例如筋膜施加的力量)提出了一个具有先验知识的深入加强学习框架。先验知识是通过直观的操纵策略来表示的。作为代理的作用,使用调节因子来协调直觉方法和故意的网络。奖励功能旨在平衡探索和剥削的大变形。成功的仿真结果验证了所提出的框架可以操纵软组织,同时避免障碍物并增加新的位置限制。与软参与者(SAC)算法相比,所提出的框架可以加速训练程序并改善概括。
translated by 谷歌翻译
虚拟试验旨在在店内服装和参考人员图像的情况下产生光真实的拟合结果。现有的方法通常建立多阶段框架来分别处理衣服翘曲和身体混合,或严重依赖基于中间解析器的标签,这些标签可能嘈杂甚至不准确。为了解决上述挑战,我们通过开发一种新型的变形注意流(DAFLOF)提出了一个单阶段的尝试框架,该框架将可变形的注意方案应用于多流量估计。仅将姿势关键点作为指导,分别为参考人员和服装图像估计了自我和跨跨性别的注意力流。通过对多个流场进行采样,通过注意机制同时提取并合并了来自不同语义区域的特征级和像素级信息。它使衣服翘曲和身体合成,同时以端到端的方式导致照片真实的结果。在两个尝试数据集上进行的广泛实验表明,我们提出的方法在定性和定量上都能达到最先进的性能。此外,其他两个图像编辑任务上的其他实验说明了我们用于多视图合成和图像动画方法的多功能性。
translated by 谷歌翻译