自然语言的歧义并不能阻止我们使用它,而环境有助于跨越想法。尽管如此,它们还是对合格机器的开发构成了一个关键挑战,以理解自然语言并像人类一样使用它。情境性是量子力学中无与伦比的现象,在其中提出了不同的数学形式主义来理解和推理。在本文中,我们为表现出类似量子的上下文性的放置歧义构建了一个模式。我们使用最近开发的捆绑理论背景性标准,该标准适用于信号模型。然后,我们利用神经词嵌入引擎bert将模式实例化为自然语言示例,并为实例提取概率分布。结果,在Bert Corpora使用的自然语言中发现了大量的捆绑示例。我们的希望是,这些示例将为将来的研究铺平道路,并找到将量子计算应用程序扩展到自然语言处理的方法。
translated by 谷歌翻译
Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the United States. These factors have in turn led to increases in the frequency, extent, and severity of wildfires in recent years. Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is an urgency to provide tools for effective wildfire management. Early detection of wildfires is essential to minimizing potentially catastrophic destruction. In this paper, we present our work on integrating multiple data sources in SmokeyNet, a deep learning model using spatio-temporal information to detect smoke from wildland fires. Camera image data is integrated with weather sensor measurements and processed by SmokeyNet to create a multimodal wildland fire smoke detection system. We present our results comparing performance in terms of both accuracy and time-to-detection for multimodal data vs. a single data source. With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
There is significant interest in deploying machine learning algorithms for diagnostic radiology, as modern learning techniques have made it possible to detect abnormalities in medical images within minutes. While machine-assisted diagnoses cannot yet reliably replace human reviews of images by a radiologist, they could inform prioritization rules for determining the order by which to review patient cases so that patients with time-sensitive conditions could benefit from early intervention. We study this scenario by formulating it as a learning-augmented online scheduling problem. We are given information about each arriving patient's urgency level in advance, but these predictions are inevitably error-prone. In this formulation, we face the challenges of decision making under imperfect information, and of responding dynamically to prediction error as we observe better data in real-time. We propose a simple online policy and show that this policy is in fact the best possible in certain stylized settings. We also demonstrate that our policy achieves the two desiderata of online algorithms with predictions: consistency (performance improvement with prediction accuracy) and robustness (protection against the worst case). We complement our theoretical findings with empirical evaluations of the policy under settings that more accurately reflect clinical scenarios in the real world.
translated by 谷歌翻译
Deepfakes are computationally-created entities that falsely represent reality. They can take image, video, and audio modalities, and pose a threat to many areas of systems and societies, comprising a topic of interest to various aspects of cybersecurity and cybersafety. In 2020 a workshop consulting AI experts from academia, policing, government, the private sector, and state security agencies ranked deepfakes as the most serious AI threat. These experts noted that since fake material can propagate through many uncontrolled routes, changes in citizen behaviour may be the only effective defence. This study aims to assess human ability to identify image deepfakes of human faces (StyleGAN2:FFHQ) from nondeepfake images (FFHQ), and to assess the effectiveness of simple interventions intended to improve detection accuracy. Using an online survey, 280 participants were randomly allocated to one of four groups: a control group, and 3 assistance interventions. Each participant was shown a sequence of 20 images randomly selected from a pool of 50 deepfake and 50 real images of human faces. Participants were asked if each image was AI-generated or not, to report their confidence, and to describe the reasoning behind each response. Overall detection accuracy was only just above chance and none of the interventions significantly improved this. Participants' confidence in their answers was high and unrelated to accuracy. Assessing the results on a per-image basis reveals participants consistently found certain images harder to label correctly, but reported similarly high confidence regardless of the image. Thus, although participant accuracy was 62% overall, this accuracy across images ranged quite evenly between 85% and 30%, with an accuracy of below 50% for one in every five images. We interpret the findings as suggesting that there is a need for an urgent call to action to address this threat.
translated by 谷歌翻译
We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.
translated by 谷歌翻译
While natural systems often present collective intelligence that allows them to self-organize and adapt to changes, the equivalent is missing in most artificial systems. We explore the possibility of such a system in the context of cooperative object manipulation using mobile robots. Although conventional works demonstrate potential solutions for the problem in restricted settings, they have computational and learning difficulties. More importantly, these systems do not possess the ability to adapt when facing environmental changes. In this work, we show that by distilling a planner derived from a gradient-based soft-body physics simulator into an attention-based neural network, our multi-robot manipulation system can achieve better performance than baselines. In addition, our system also generalizes to unseen configurations during training and is able to adapt toward task completions when external turbulence and environmental changes are applied.
translated by 谷歌翻译
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
translated by 谷歌翻译
检测障碍对于安全有效的自动驾驶至关重要。为此,我们提出了NVRadarnet,这是一种深神经网络(DNN),它使用汽车雷达传感器检测动态障碍物和可驱动的自由空间。该网络利用从多个雷达传感器的时间积累的数据来检测动态障碍,并在自上而下的鸟类视图(BEV)中计算其方向。该网络还可以回归可驱动的自由空间,以检测未分类的障碍。我们的DNN是第一个使用稀疏雷达信号的同类DNN,以实时从雷达数据实时执行障碍物和自由空间检测。在实际的自动驾驶场景中,该网络已成功地用于我们的自动驾驶汽车。该网络在嵌入式GPU上的运行速度快于实时时间,并且在地理区域显示出良好的概括。
translated by 谷歌翻译
我们研究了Levin(1993)所述的动词交替类的程度和句子级预测任务。我们遵循并扩展了Kann等人的实验。(2019年),旨在探测静态嵌入是否编码动词的框架选择性。在单词和句子级别上,我们发现来自PLM的上下文嵌入不仅超过了非上下文嵌入,而且在大多数交替类中的任务上达到了惊人的高精度。此外,我们发现证据表明,PLM的中间层平均比所有探测任务中的较低层都能取得更好的性能。
translated by 谷歌翻译