We present a method for controlling a swarm using its spectral decomposition -- that is, by describing the set of trajectories of a swarm in terms of a spatial distribution throughout the operational domain -- guaranteeing scale invariance with respect to the number of agents both for computation and for the operator tasked with controlling the swarm. We use ergodic control, decentralized across the network, for implementation. In the DARPA OFFSET program field setting, we test this interface design for the operator using the STOMP interface -- the same interface used by Raytheon BBN throughout the duration of the OFFSET program. In these tests, we demonstrate that our approach is scale-invariant -- the user specification does not depend on the number of agents; it is persistent -- the specification remains active until the user specifies a new command; and it is real-time -- the user can interact with and interrupt the swarm at any time. Moreover, we show that the spectral/ergodic specification of swarm behavior degrades gracefully as the number of agents goes down, enabling the operator to maintain the same approach as agents become disabled or are added to the network. We demonstrate the scale-invariance and dynamic response of our system in a field relevant simulator on a variety of tactical scenarios with up to 50 agents. We also demonstrate the dynamic response of our system in the field with a smaller team of agents. Lastly, we make the code for our system available.
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
Human operators in human-robot teams are commonly perceived to be critical for mission success. To explore the direct and perceived impact of operator input on task success and team performance, 16 real-world missions (10 hrs) were conducted based on the DARPA Subterranean Challenge. These missions were to deploy a heterogeneous team of robots for a search task to locate and identify artifacts such as climbing rope, drills and mannequins representing human survivors. Two conditions were evaluated: human operators that could control the robot team with state-of-the-art autonomy (Human-Robot Team) compared to autonomous missions without human operator input (Robot-Autonomy). Human-Robot Teams were often in directed autonomy mode (70% of mission time), found more items, traversed more distance, covered more unique ground, and had a higher time between safety-related events. Human-Robot Teams were faster at finding the first artifact, but slower to respond to information from the robot team. In routine conditions, scores were comparable for artifacts, distance, and coverage. Reasons for intervention included creating waypoints to prioritise high-yield areas, and to navigate through error-prone spaces. After observing robot autonomy, operators reported increases in robot competency and trust, but that robot behaviour was not always transparent and understandable, even after high mission performance.
translated by 谷歌翻译
近年来,研究人员委托机器人和无人驾驶汽车(UAV)团队委托进行准确的在线野火覆盖范围和跟踪。迄今为止,大多数先前的工作都集中在此类多机器人系统的协调和控制上,但尚未赋予这些无人机团队对火的轨道(即位置和传播动态)进行推理的能力,以提供性能保证时间范围。在空中野火监测的问题上,我们提出了一个预测框架,该框架使多UAV团队的合作能够与概率性能保证一起进行协作现场覆盖和火灾跟踪。我们的方法使无人机能够推断出潜在的火灾传播动态,以在安全至关重要的条件下进行时间扩展的协调。我们得出了一组新颖的,分析的时间和跟踪纠纷界限,以使无人机团队根据特定于案例的估计状态分发有限的资源并覆盖整个火灾区域,并提供概率性能保证。我们的结果不仅限于空中野火监测案例研究,而且通常适用于搜索和救援,目标跟踪和边境巡逻等问题。我们在模拟中评估了我们的方法,并在物理多机器人测试台上提供了建议的框架,以说明真实的机器人动态和限制。我们的定量评估验证了我们的方法的性能,分别比基于最新的模型和强化学习基准分别累积了7.5倍和9.0倍的跟踪误差。
translated by 谷歌翻译
热方程驱动区域覆盖范围(HEDAC)是由潜在场的梯度引导的最先进的多机颈运动控制。特此实施有限元方法以获得Helmholtz部分微分方程的解决方案,该方程对测量运动控制的潜在字段进行了建模。这使我们能够调查任意形状的领域,并以优雅而健壮的方式包括Hedac的基本想法。对于简单的运动运动运动,通过将试剂运动用电位的梯度引导,可以成功处理障碍和边界避免限制。但是,包括其他约束,例如固定障碍物和移动障碍物的最小间隙距离以及最小的路径曲率半径,都需要控制算法的进一步交替。我们通过基于无碰撞逃生路线操纵的直接优化问题制定了一种相对简单但可靠的方法来处理这些约束的方法。这种方法提供了保证的避免碰撞机制,同时由于优化问题分配而在计算上是便宜的。在三个现实的测量场景模拟中评估了所提出的运动控制,显示了测量的有效性和控制算法的鲁棒性。此外,突出了由于定义不当的测量场景而引起的潜在操纵困难,我们提供了有关如何超越它们的指南。结果是有希望的,并表明了对自主测量和潜在的其他HEDAC利用的拟议受限的多代理运动控制的现实适用性。
translated by 谷歌翻译
在这项工作中,我们提出了一个端到端的异质多机器人系统框架,地面机器人能够在高空四个四极管实时创建的语义图中进行本地化,计划和导航。地面机器人在没有任何外部干预的情况下独立选择并解散目标。此外,他们通过使用语义将其本地地图与高架图匹配,执行跨视图本地化。通信主链是机会主义的,并且可以分配,使整个系统除了四型四型GPS之外没有外部基础架构,没有外部基础架构。我们通过在不同环境中的多个实验上执行不同的任务,通过执行不同的任务,对系统进行了广泛的测试。我们的地面机器人在现实世界中最少的干预和96公里的模拟无需干预即可自主行驶以上超过6公里。
translated by 谷歌翻译
在本报告中,我们提出了在哥斯达黎加太平洋架子和圣托里尼 - Kolumbo Caldera Complex中,在寻找寿命中的寻找寿命任务中的自主海洋机器人技术协调,操作策略和结果。它作为可能存在于海洋超越地球的环境中的类似物。本报告侧重于ROV操纵器操作的自动化,用于从海底获取有针对性的生物样品收集和返回的。在未来的外星勘查任务到海洋世界的背景下,ROV是一个模拟的行星着陆器,必须能够有能力的高水平自主权。我们的田间试验涉及两个水下车辆,冰(Nui)杂交ROV的两个水下车辆(即,龙眼或自主)任务,都配备了7-DOF液压机械手。我们描述了一种适应性,硬件无关的计算机视觉架构,可实现高级自动化操作。 Vision系统提供了对工作空间的3D理解,以便在复杂的非结构化环境中通知操纵器运动计划。我们展示了视觉系统和控制框架通过越来越具有挑战性的环境中的现场试验的有效性,包括来自活性Undersea火山,Kolumbo内的自动收集和生物样品的回报。根据我们在该领域的经验,我们讨论了我们的系统的表现,并确定了未来研究的有希望的指示。
translated by 谷歌翻译
This paper presents trajectory planning for three-dimensional autonomous multi-UAV volume coverage and visual inspection based on the Heat Equation Driven Area Coverage (HEDAC) algorithm. The method designs a potential field to achieve the target density and generate trajectories using potential gradients to direct UAVs to regions of a higher potential. Collisions are prevented by implementing a distance field and correcting the agent's directional vector if the distance threshold is reached. The method is successfully tested for volume coverage and visual inspection of complex structures such as wind turbines and a bridge. For visual inspection, the algorithm is supplemented with camera direction control. A field containing the nearest distance from any point in the domain to the structure is designed and this field's gradient provides the camera orientation throughout the trajectory. The bridge inspection test case is compared with a state-of-the-art method where the HEDAC algorithm allowed more surface area to be inspected under the same conditions. The limitations of the HEDAC method are analyzed, focusing on computational efficiency and adequacy of spatial coverage to approximate the surface coverage. The proposed methodology offers flexibility in various setup parameters and is applicable to real-world inspection tasks.
translated by 谷歌翻译
This article presents a survey of literature in the area of Human-Robot Interaction (HRI), specifically on systems containing more than two agents (i.e., having multiple humans and/or multiple robots). We identify three core aspects of ``Multi-agent" HRI systems that are useful for understanding how these systems differ from dyadic systems and from one another. These are the Team structure, Interaction style among agents, and the system's Computational characteristics. Under these core aspects, we present five attributes of HRI systems, namely Team size, Team composition, Interaction model, Communication modalities, and Robot control. These attributes are used to characterize and distinguish one system from another. We populate resulting categories with examples from recent literature along with a brief discussion of their applications and analyze how these attributes differ from the case of dyadic human-robot systems. We summarize key observations from the current literature, and identify challenges and promising areas for future research in this domain. In order to realize the vision of robots being part of the society and interacting seamlessly with humans, there is a need to expand research on multi-human -- multi-robot systems. Not only do these systems require coordination among several agents, they also involve multi-agent and indirect interactions which are absent from dyadic HRI systems. Adding multiple agents in HRI systems requires advanced interaction schemes, behavior understanding and control methods to allow natural interactions among humans and robots. In addition, research on human behavioral understanding in mixed human-robot teams also requires more attention. This will help formulate and implement effective robot control policies in HRI systems with large numbers of heterogeneous robots and humans; a team composition reflecting many real-world scenarios.
translated by 谷歌翻译
Mohamed Bin Zayed国际机器人挑战(MBZIRC)2020为无人机(无人机)构成了不同的挑战。我们提供了四个量身定制的无人机,专门为MBZIRC的单独空中机器人任务开发,包括自定义硬件和软件组件。在挑战1中,使用高效率,车载对象检测管道进行目标UAV,以捕获来自目标UAV的球。第二个UAV使用类似的检测方法来查找和流行散落在整个竞技场的气球。对于挑战2,我们展示了一种能够自主空中操作的更大的无人机:从相机图像找到并跟踪砖。随后,将它们接近,挑选,运输并放在墙上。最后,在挑战3中,我们的UAV自动发现使用LIDAR和热敏摄像机的火灾。它用船上灭火器熄灭火灾。虽然每个机器人都具有任务特定的子系统,但所有无人机都依赖于为该特定和未来竞争开发的标准软件堆栈。我们介绍了我们最开源的软件解决方案,包括系统配置,监控,强大无线通信,高级控制和敏捷轨迹生成的工具。为了解决MBZirc 2020任务,我们在多个研究领域提出了机器视觉和轨迹生成的多个研究领域。我们介绍了我们的科学贡献,这些贡献构成了我们的算法和系统的基础,并分析了在阿布扎比的MBZIRC竞赛2020年的结果,我们的系统在大挑战中达到了第二名。此外,我们讨论了我们参与这种复杂的机器人挑战的经验教训。
translated by 谷歌翻译
船上自治技术,如规划和调度,识别科学目标和基于内容的数据摘要,将导致令人兴奋的新空间科学任务。然而,尚未研究具有此类船上自治能力的经营任务的挑战,这是足以在使命概念中考虑的细节水平。这些自主功能需要更改当前的操作流程,实践和工具。我们制定了一个案例研究,以评估使运营商和科学家通过促进地面人员和车载算法之间的共同模型来运营自主航天器所需的变化。我们评估使运营商和科学家能够向航天器传达所需的新的操作工具和工作流程,并能够重建和解释船上和航天器状态的决定。这些工具的模型用于用户学习,了解过程和工具在实现共享理解框架方面的有效性,以及在运营商和科学家有效实现特派团科学目标的能力。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译