Recent years have seen a proliferation of research on adversarial machine learning. Numerous papers demonstrate powerful algorithmic attacks against a wide variety of machine learning (ML) models, and numerous other papers propose defenses that can withstand most attacks. However, abundant real-world evidence suggests that actual attackers use simple tactics to subvert ML-driven systems, and as a result security practitioners have not prioritized adversarial ML defenses. Motivated by the apparent gap between researchers and practitioners, this position paper aims to bridge the two domains. We first present three real-world case studies from which we can glean practical insights unknown or neglected in research. Next we analyze all adversarial ML papers recently published in top security conferences, highlighting positive trends and blind spots. Finally, we state positions on precise and cost-driven threat modeling, collaboration between industry and academia, and reproducible research. We believe that our positions, if adopted, will increase the real-world impact of future endeavours in adversarial ML, bringing both researchers and practitioners closer to their shared goal of improving the security of ML systems.
translated by 谷歌翻译
大气效应(例如湍流和背景热噪声)抑制了在开关键控自由空间光学通信中使用的相干光的传播。在这里,我们介绍并实验验证了卷积神经网络,以降低后处理中自由空间光学通信的位错误率,而自由空间光学通信的位比基于高级光学器件的现有解决方案明显简单,更便宜。我们的方法由两个神经网络组成,这是第一个确定在热噪声和湍流中存在相干位序列以及第二个解调相干位序列的存在。通过生成连贯的光线,将它们与热灯结合在一起,并通过湍流的水箱将其结合起来,通过生成开关的键入键流,可以通过实验获得我们网络的所有数据,从而获得了模拟的湍流,并将其传递给了最终的光线。高度准确性。我们的卷积神经网络提高了与阈值分类方案相比的检测准确性,并具有与当前解调和误差校正方案集成的能力。
translated by 谷歌翻译
沿规定的任务空间路径的冗余机器人的轨迹的离线最佳规划通常分为两个连续的过程:首先,任务空间路径倒置以获得一个联合空间路径,然后,后者通过时间定律进行参数化。如果两个过程分开,它们将无法优化相同的目标函数,最终提供了次优的结果。在本文中,提出了一种统一的方法,而动态编程是基础优化技术。它的灵活性允许安装任意约束和客观功能,从而为真实系统的最佳计划提供了一个通用框架。为了证明其适用于现实世界情景,该框架是实例化的,以进行时间优势。与数值求解器相比,所提出的方法提供了基础分辨率过程的可见性,从而超出了最佳轨迹的计算以外的进一步分析。该框架的有效性已在真正的7度自由串行链上证明。还讨论和解决了与实际控制器上执行最佳轨迹相关的问题。实验表明,所提出的框架能够有效利用运动学冗余,以优化计划级别定义的性能索引,并生成可行的轨迹,这些轨迹可以在真实硬件上执行,并具有令人满意的结果。
translated by 谷歌翻译
在本文中,我们提出了一种新的顺序数据驱动方法,用于处理均衡的基于均衡的化学模拟,这可以被视为称为主动学习的特定机器学习方法。我们方法的潜在思想是考虑估计作为高斯进程的样本的函数,这使我们能够计算函数估计上的全局不确定性。由于此估计和几乎没有参数来调整,所提出的方法顺序选择最相关的输入数据,其中必须评估估计的函数以构建代理模型。因此,估计函数的评估的数量显着限制。我们的主动学习方法通过数值实验验证,并应用于常用于地球科学的复杂化学体系。
translated by 谷歌翻译
在本文中,我们提出了一种新方法来检测具有归因顶点的无向图中的簇。目的是将不仅在结构连接性方面,而且在属性值方面相似的顶点分组。我们通过创建[6,38]中提出的其他顶点和边缘,将顶点之间的结构和属性相似。然后将增强图嵌入到与其拉普拉斯式相关的欧几里得空间中,在该空间中,应用了修改的K-均值算法以识别簇。修改后的k均值依赖于矢量距离度量,根据每个原始顶点,我们分配了合适的矢量值坐标集,这取决于结构连接性和属性相似性,因此每个原始图顶点都被认为是$ M+1的代表增强图的$顶点,如果$ m $是顶点属性的数量。为了定义坐标矢量,我们基于自适应AMG(代数多机)方法采用了我们最近提出的算法,该方法识别了嵌入欧几里得空间中的坐标方向,以代数平滑的矢量相对于我们的增强图Laplacian,从而扩展了laplacian,从而扩展了坐标。没有属性的图形的先前结果。我们通过与一些知名方法进行比较,分析了我们提出的聚类方法的有效性,这些方法可以免费获得软件实现,并与文献中报告的结果相比,在两种不同类型的广泛使用的合成图上以及在某些现实世界中的图形上。
translated by 谷歌翻译