我们研究随机的在线资源分配:决策者需要分配有限的资源来为随机生成的顺序派遣请求,以最大程度地提高奖励。通过练习,我们考虑了一个数据驱动的设置,在该设置中,请求独立于决策者未知的分布。过去已经对在线资源分配及其特殊情况进行了广泛的研究,但是这些先前的结果至关重要和普遍地依赖于一个实际上不可能的假设:请求总数(地平线)是决策者事先知道的。在许多应用程序(例如收入管理和在线广告)中,由于需求或用户流量强度的波动,请求的数量可能差异很大。在这项工作中,我们开发了在线算法,这些算法对地平线不确定性是可靠的。与已知的马环境形成鲜明对比的是,我们表明没有算法可以达到与视野不确定性无关的恒定渐近竞争比率。然后,我们引入了一种新型算法,该算法将双镜下降与精心选择的目标消耗序列结合在一起,并证明其达到了有限的竞争比率。从地平线不确定性增长时,我们的竞争比达到了最佳生长速率,我们的算法几乎是最佳的。
translated by 谷歌翻译
资源限制的在线分配问题是收入管理和在线广告中的核心问题。在这些问题中,请求在有限的地平线期间顺序到达,对于每个请求,决策者需要选择消耗一定数量资源并生成奖励的动作。目标是最大限度地提高累计奖励,这是对资源总消费的限制。在本文中,我们考虑一种数据驱动的设置,其中使用决策者未知的输入模型生成每个请求的奖励和资源消耗。我们设计了一般的算法算法,可以在各种输入模型中实现良好的性能,而不知道它们面临的类型类型。特别是,我们的算法在独立和相同的分布式输入以及各种非静止随机输入模型下是渐近的最佳选择,并且当输入是对抗性时,它们达到渐近最佳的固定竞争比率。我们的算法在Lagrangian双色空间中运行:它们为使用在线镜像血管更新的每个资源维护双倍乘数。通过相应地选择参考功能,我们恢复双梯度下降和双乘法权重更新算法。与现有的在线分配问题的现有方法相比,所产生的算法简单,快速,不需要在收入函数,消费函数和动作空间中凸起。我们将应用程序讨论到网络收入管理,在线竞标,重复拍卖,预算限制,与高熵的在线比例匹配,以及具有有限库存的个性化分类优化。
translated by 谷歌翻译
在线分配资源限制问题具有丰富的运营研究历史记录。在本文中,我们介绍了\ emph {正常的在线分配问题},该变体包括用于总资源消耗的非线性规范器。在此问题中,请求多次到达,对于每个请求,决策者需要采取生成奖励和消耗资源的操作。目的是同时最大化可分离可分离的奖励和受资源限制的不可分级规范器的值。我们的主要动机是允许决策者履行可分离目标,例如与辅助,不可分配的目标的经济效率,例如分配的公平或公平。我们设计了一种简单,快速,并且具有随机I.I.D的良好性能的算法。〜和对抗的投入。特别是,我们的算法在随机I.I.D下渐近最佳。输入模型并达到固定的竞争比率,当输入是对越野的时,取决于常规管道。此外,算法和分析不需要贡献函数和消耗函数的凸起或凹面,这允许更多的模型灵活性。数值实验证实了算法在互联网广告应用中的算法和正则化的有效性。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e., probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning.
translated by 谷歌翻译
The emergence of large pretrained models has enabled language models to achieve superior performance in common NLP tasks, including language modeling and question answering, compared to previous static word representation methods. Augmenting these models with a retriever to retrieve the related text and documents as supporting information has shown promise in effectively solving NLP problems in a more interpretable way given that the additional knowledge is injected explicitly rather than being captured in the models' parameters. In spite of the recent progress, our analysis on retriever-augmented language models shows that this class of language models still lack reasoning over the retrieved documents. In this paper, we study the strengths and weaknesses of different retriever-augmented language models such as REALM, kNN-LM, FiD, ATLAS, and Flan-T5 in reasoning over the selected documents in different tasks. In particular, we analyze the reasoning failures of each of these models and study how the models' failures in reasoning are rooted in the retriever module as well as the language model.
translated by 谷歌翻译
Graph learning problems are typically approached by focusing on learning the topology of a single graph when signals from all nodes are available. However, many contemporary setups involve multiple related networks and, moreover, it is often the case that only a subset of nodes is observed while the rest remain hidden. Motivated by this, we propose a joint graph learning method that takes into account the presence of hidden (latent) variables. Intuitively, the presence of the hidden nodes renders the inference task ill-posed and challenging to solve, so we overcome this detrimental influence by harnessing the similarity of the estimated graphs. To that end, we assume that the observed signals are drawn from a Gaussian Markov random field with latent variables and we carefully model the graph similarity among hidden (latent) nodes. Then, we exploit the structure resulting from the previous considerations to propose a convex optimization problem that solves the joint graph learning task by providing a regularized maximum likelihood estimator. Finally, we compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.
translated by 谷歌翻译
In this work, we estimate the depth in which domestic waste are located in space from a mobile robot in outdoor scenarios. As we are doing this calculus on a broad range of space (0.3 - 6.0 m), we use RGB-D camera and LiDAR fusion. With this aim and range, we compare several methods such as average, nearest, median and center point, applied to those which are inside a reduced or non-reduced Bounding Box (BB). These BB are obtained from segmentation and detection methods which are representative of these techniques like Yolact, SOLO, You Only Look Once (YOLO)v5, YOLOv6 and YOLOv7. Results shown that, applying a detection method with the average technique and a reduction of BB of 40%, returns the same output as segmenting the object and applying the average method. Indeed, the detection method is faster and lighter in comparison with the segmentation one. The committed median error in the conducted experiments was 0.0298 ${\pm}$ 0.0544 m.
translated by 谷歌翻译
Equivariance of neural networks to transformations helps to improve their performance and reduce generalization error in computer vision tasks, as they apply to datasets presenting symmetries (e.g. scalings, rotations, translations). The method of moving frames is classical for deriving operators invariant to the action of a Lie group in a manifold.Recently, a rotation and translation equivariant neural network for image data was proposed based on the moving frames approach. In this paper we significantly improve that approach by reducing the computation of moving frames to only one, at the input stage, instead of repeated computations at each layer. The equivariance of the resulting architecture is proved theoretically and we build a rotation and translation equivariant neural network to process volumes, i.e. signals on the 3D space. Our trained model overperforms the benchmarks in the medical volume classification of most of the tested datasets from MedMNIST3D.
translated by 谷歌翻译
Predicting discrete events in time and space has many scientific applications, such as predicting hazardous earthquakes and outbreaks of infectious diseases. History-dependent spatio-temporal Hawkes processes are often used to mathematically model these point events. However, previous approaches have faced numerous challenges, particularly when attempting to forecast one or multiple future events. In this work, we propose a new neural architecture for multi-event forecasting of spatio-temporal point processes, utilizing transformers, augmented with normalizing flows and probabilistic layers. Our network makes batched predictions of complex history-dependent spatio-temporal distributions of future discrete events, achieving state-of-the-art performance on a variety of benchmark datasets including the South California Earthquakes, Citibike, Covid-19, and Hawkes synthetic pinwheel datasets. More generally, we illustrate how our network can be applied to any dataset of discrete events with associated markers, even when no underlying physics is known.
translated by 谷歌翻译