精确预测加工循环时间在制造业中很重要。通常,计算机辅助制造(CAM)软件使用基本的运动设置使用来自刀具路径文件的命令进给的加工时间。通常,该方法不考虑刀具路径几何形状或刀具路公差,因此估计大幅度的加工循环时间。删除对机器特异性知识的需求,本文通过为每个机床轴构建神经网络模型提出了一种数据驱动的进给和加工周期时间预测方法。在本研究中,使用由指令的进给,标称加速,刀具路径几何和测量的进料组成的数据集来训练神经网络模型。在商业加工中心上使用代表性工业薄壁结构组件的验证试验表明,该方法估计了90%以上的加工时间。该方法表明,神经网络模型具有了解复杂机床系统的行为和预测循环时间的能力。进一步整合这些方法在工业4.0中的数字双胞胎的植入中至关重要。
translated by 谷歌翻译
Crop type maps are critical for tracking agricultural land use and estimating crop production. Remote sensing has proven an efficient and reliable tool for creating these maps in regions with abundant ground labels for model training, yet these labels remain difficult to obtain in many regions and years. NASA's Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar instrument, originally designed for forest monitoring, has shown promise for distinguishing tall and short crops. In the current study, we leverage GEDI to develop wall-to-wall maps of short vs tall crops on a global scale at 10 m resolution for 2019-2021. Specifically, we show that (1) GEDI returns can reliably be classified into tall and short crops after removing shots with extreme view angles or topographic slope, (2) the frequency of tall crops over time can be used to identify months when tall crops are at their peak height, and (3) GEDI shots in these months can then be used to train random forest models that use Sentinel-2 time series to accurately predict short vs. tall crops. Independent reference data from around the world are then used to evaluate these GEDI-S2 maps. We find that GEDI-S2 performed nearly as well as models trained on thousands of local reference training points, with accuracies of at least 87% and often above 90% throughout the Americas, Europe, and East Asia. Systematic underestimation of tall crop area was observed in regions where crops frequently exhibit low biomass, namely Africa and South Asia, and further work is needed in these systems. Although the GEDI-S2 approach only differentiates tall from short crops, in many landscapes this distinction goes a long way toward mapping the main individual crop types. The combination of GEDI and Sentinel-2 thus presents a very promising path towards global crop mapping with minimal reliance on ground data.
translated by 谷歌翻译
In this paper, we consider incorporating data associated with the sun's north and south polar field strengths to improve solar flare prediction performance using machine learning models. When used to supplement local data from active regions on the photospheric magnetic field of the sun, the polar field data provides global information to the predictor. While such global features have been previously proposed for predicting the next solar cycle's intensity, in this paper we propose using them to help classify individual solar flares. We conduct experiments using HMI data employing four different machine learning algorithms that can exploit polar field information. Additionally, we propose a novel probabilistic mixture of experts model that can simply and effectively incorporate polar field data and provide on-par prediction performance with state-of-the-art solar flare prediction algorithms such as the Recurrent Neural Network (RNN). Our experimental results indicate the usefulness of the polar field data for solar flare prediction, which can improve Heidke Skill Score (HSS2) by as much as 10.1%.
translated by 谷歌翻译
Question Answering (QA) is a growing area of research, often used to facilitate the extraction of information from within documents. State-of-the-art QA models are usually pre-trained on domain-general corpora like Wikipedia and thus tend to struggle on out-of-domain documents without fine-tuning. We demonstrate that synthetic domain-specific datasets can be generated easily using domain-general models, while still providing significant improvements to QA performance. We present two new tools for this task: A flexible pipeline for validating the synthetic QA data and training downstream models on it, and an online interface to facilitate human annotation of this generated data. Using this interface, crowdworkers labelled 1117 synthetic QA pairs, which we then used to fine-tune downstream models and improve domain-specific QA performance by 8.75 F1.
translated by 谷歌翻译
The need for AI systems to provide explanations for their behaviour is now widely recognised as key to their adoption. In this paper, we examine the problem of trustworthy AI and explore what delivering this means in practice, with a focus on healthcare applications. Work in this area typically treats trustworthy AI as a problem of Human-Computer Interaction involving the individual user and an AI system. However, we argue here that this overlooks the important part played by organisational accountability in how people reason about and trust AI in socio-technical settings. To illustrate the importance of organisational accountability, we present findings from ethnographic studies of breast cancer screening and cancer treatment planning in multidisciplinary team meetings to show how participants made themselves accountable both to each other and to the organisations of which they are members. We use these findings to enrich existing understandings of the requirements for trustworthy AI and to outline some candidate solutions to the problems of making AI accountable both to individual users and organisationally. We conclude by outlining the implications of this for future work on the development of trustworthy AI, including ways in which our proposed solutions may be re-used in different application settings.
translated by 谷歌翻译
Opinion summarisation synthesises opinions expressed in a group of documents discussing the same topic to produce a single summary. Recent work has looked at opinion summarisation of clusters of social media posts. Such posts are noisy and have unpredictable structure, posing additional challenges for the construction of the summary distribution and the preservation of meaning compared to online reviews, which has been so far the focus of opinion summarisation. To address these challenges we present \textit{WassOS}, an unsupervised abstractive summarization model which makes use of the Wasserstein distance. A Variational Autoencoder is used to get the distribution of documents/posts, and the distributions are disentangled into separate semantic and syntactic spaces. The summary distribution is obtained using the Wasserstein barycenter of the semantic and syntactic distributions. A latent variable sampled from the summary distribution is fed into a GRU decoder with a transformer layer to produce the final summary. Our experiments on multiple datasets including Twitter clusters, Reddit threads, and reviews show that WassOS almost always outperforms the state-of-the-art on ROUGE metrics and consistently produces the best summaries with respect to meaning preservation according to human evaluations.
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
This paper presents a 1-D convolutional graph neural network for fault detection in microgrids. The combination of 1-D convolutional neural networks (1D-CNN) and graph convolutional networks (GCN) helps extract both spatial-temporal correlations from the voltage measurements in microgrids. The fault detection scheme includes fault event detection, fault type and phase classification, and fault location. There are five neural network model training to handle these tasks. Transfer learning and fine-tuning are applied to reduce training efforts. The combined recurrent graph convolutional neural networks (1D-CGCN) is compared with the traditional ANN structure on the Potsdam 13-bus microgrid dataset. The achievable accuracy of 99.27%, 98.1%, 98.75%, and 95.6% for fault detection, fault type classification, fault phase identification, and fault location respectively.
translated by 谷歌翻译
我们定义了一个新颖的神经符号框架,论证奖励学习,该奖励学习将基于偏好的论点与现有方法结合了从人类反馈中加强学习的方法。我们的方法通过概括人类的偏好,减轻用户的负担并增加奖励模型的鲁棒性来改善先前的工作。我们通过许多实验证明了这一点。
translated by 谷歌翻译
从职位发布获得的汇总数据为劳动力市场需求,新兴技能以及援助工作匹配提供了有力的见解。但是,大多数提取方法受到监督,因此需要昂贵且耗时的注释。为了克服这一点,我们建议通过弱监督提取技巧。我们利用欧洲的技能,能力,资格和职业分类法,通过潜在代表来找到工作广告的类似技能。该方法根据令牌级别和句法模式显示了强烈的正信号,优于基准。
translated by 谷歌翻译