多养殖养殖具有环境优势,但比单一养殖需要更修剪。我们介绍用于自动修剪的新型硬件和算法。自主系统使用高架摄像头从物理规模的花园测试床中收集数据,利用学识渊博的植物表型卷积神经网络和边界磁盘跟踪算法来评估单个植物分布并每天估算花园的状态。从这个花园状态下,Alphagardensim选择植物自主修剪。训练有素的神经网络检测并靶向工厂上的特定修发点。实验评估了两种与农业机器人龙门系统兼容的定制设计的修剪工具,并通过受控算法进行了自主削减。我们提出了四个60天的花园周期的结果。结果表明,该系统可以自主实现0.94个归一化的植物多样性,并在修剪剪切的同时保持平均冠层覆盖率为0.84,到周期结束时。有关代码,视频和数据集,请参见https://sites.google.com/berkeley.edu/pruningpolyculture。
translated by 谷歌翻译
模拟到现实的转移已成为一种流行且非常成功的方法,用于培训各种任务的机器人控制政策。但是,确定在模拟中训练的政策何时准备将其转移到物理世界通常是一个挑战。部署经过很少的模拟数据训练的策略可能会导致物理硬件的不可靠和危险行为。另一方面,模拟中的过度训练会导致策略过度拟合模拟器的视觉外观和动力学。在这项工作中,我们研究了自动确定在模拟中训练的策略何时可以可靠地转移到物理机器人的策略。我们在机器人织物操纵的背景下专门研究了这些思想,因为成功建模织物的动力学和视觉外观的困难,成功的SIM2Real转移尤其具有挑战性。导致织物平滑任务表明我们的切换标准与实际的性能很好地相关。特别是,我们基于信心的切换标准在培训总预算的55-60%之内达到了87.2-93.7%的平均最终面料覆盖率。有关代码和补充材料,请参见https://tinyurl.com/lsc-case。
translated by 谷歌翻译
本文展示了alphaRARDEN:一个自治的多种植花园,在1.5米×3.0米的物理测试平台中撒上和灌溉生物植物。alphanArden使用架空相机和传感器来跟踪植物分布和土壤水分。我们模拟个体植物生长和平面动态,以培训选择行动以最大化叶片覆盖和多样性的政策。对于自主修剪,alphanarden使用两个定制的修剪工具和训练有素的神经网络来检测紫杉角。我们为四个60天的花园周期提供了结果。结果表明,alphaRARARDEN可以自主地实现0.96个归一化多样性,在循环峰值期间保持0.86的平均冠层覆盖率。可以在https://github.com/berkeleyautomation/alpharden找到代码,数据集和补充材料。
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
Using geometric landmarks like lines and planes can increase navigation accuracy and decrease map storage requirements compared to commonly-used LiDAR point cloud maps. However, landmark-based registration for applications like loop closure detection is challenging because a reliable initial guess is not available. Global landmark matching has been investigated in the literature, but these methods typically use ad hoc representations of 3D line and plane landmarks that are not invariant to large viewpoint changes, resulting in incorrect matches and high registration error. To address this issue, we adopt the affine Grassmannian manifold to represent 3D lines and planes and prove that the distance between two landmarks is invariant to rotation and translation if a shift operation is performed before applying the Grassmannian metric. This invariance property enables the use of our graph-based data association framework for identifying landmark matches that can subsequently be used for registration in the least-squares sense. Evaluated on a challenging landmark matching and registration task using publicly-available LiDAR datasets, our approach yields a 1.7x and 3.5x improvement in successful registrations compared to methods that use viewpoint-dependent centroid and "closest point" representations, respectively.
translated by 谷歌翻译
How do we design measures of social bias that we trust? While prior work has introduced several measures, no measure has gained widespread trust: instead, mounting evidence argues we should distrust these measures. In this work, we design bias measures that warrant trust based on the cross-disciplinary theory of measurement modeling. To combat the frequently fuzzy treatment of social bias in NLP, we explicitly define social bias, grounded in principles drawn from social science research. We operationalize our definition by proposing a general bias measurement framework DivDist, which we use to instantiate 5 concrete bias measures. To validate our measures, we propose a rigorous testing protocol with 8 testing criteria (e.g. predictive validity: do measures predict biases in US employment?). Through our testing, we demonstrate considerable evidence to trust our measures, showing they overcome conceptual, technical, and empirical deficiencies present in prior measures.
translated by 谷歌翻译
Evaluation is the central means for assessing, understanding, and communicating about NLP models. In this position paper, we argue evaluation should be more than that: it is a force for driving change, carrying a sociological and political character beyond its technical dimensions. As a force, evaluation's power arises from its adoption: under our view, evaluation succeeds when it achieves the desired change in the field. Further, by framing evaluation as a force, we consider how it competes with other forces. Under our analysis, we conjecture that the current trajectory of NLP suggests evaluation's power is waning, in spite of its potential for realizing more pluralistic ambitions in the field. We conclude by discussing the legitimacy of this power, who acquires this power and how it distributes. Ultimately, we hope the research community will more aggressively harness evaluation for change.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Tuberculosis (TB), an infectious bacterial disease, is a significant cause of death, especially in low-income countries, with an estimated ten million new cases reported globally in $2020$. While TB is treatable, non-adherence to the medication regimen is a significant cause of morbidity and mortality. Thus, proactively identifying patients at risk of dropping off their medication regimen enables corrective measures to mitigate adverse outcomes. Using a proxy measure of extreme non-adherence and a dataset of nearly $700,000$ patients from four states in India, we formulate and solve the machine learning (ML) problem of early prediction of non-adherence based on a custom rank-based metric. We train ML models and evaluate against baselines, achieving a $\sim 100\%$ lift over rule-based baselines and $\sim 214\%$ over a random classifier, taking into account country-wide large-scale future deployment. We deal with various issues in the process, including data quality, high-cardinality categorical data, low target prevalence, distribution shift, variation across cohorts, algorithmic fairness, and the need for robustness and explainability. Our findings indicate that risk stratification of non-adherent patients is a viable, deployable-at-scale ML solution.
translated by 谷歌翻译