在各个领域(例如政治,健康和娱乐)中的真实和虚假新闻每天都通过在线社交媒体传播,需要对多个领域进行虚假新闻检测。其中,在政治和健康等特定领域中的虚假新闻对现实世界产生了更严重的潜在负面影响(例如,由Covid-19的错误信息引导的流行病)。先前的研究着重于多域假新闻检测,同样采矿和建模域之间的相关性。但是,这些多域方法遇到了SEESAW问题:某些域的性能通常会以损害其他域的性能而改善,这可能导致在特定领域的表现不满意。为了解决这个问题,我们建议一个用于假新闻检测(DITFEND)的域和实例级传输框架,这可以改善特定目标域的性能。为了传递粗粒域级知识,我们从元学习的角度训练了所有域数据的通用模型。为了传输细粒度的实例级知识并将一般模型调整到目标域,我们在目标域上训练语言模型,以评估每个数据实例在源域中的可传递性,并重新赢得每个实例的贡献。两个数据集上的离线实验证明了Ditfend的有效性。在线实验表明,在现实世界中,Ditfend对基本模型带来了更多改进。
translated by 谷歌翻译
假新闻的广泛传播越来越威胁到个人和社会。在单个领域(例如政治)上自动假新闻发现已做出了巨大的努力。但是,相关性通常存在于多个新闻领域,因此有望同时检测多个域的假新闻。基于我们的分析,我们在多域假新闻检测中提出了两个挑战:1)域转移,是由域,情感,样式等领域之间的差异引起的。世界分类仅输出一个单个领域标签,而不管新闻文章的主题多样性如何。在本文中,我们提出了一个记忆引导的多视图多域假新闻检测框架(M $^3 $ fend),以应对这两个挑战。我们从多视图的角度对新闻作品进行建模,包括语义,情感和风格。具体而言,我们建议一个域存储库来丰富域信息,该信息可以根据可见的新闻和模型域特征来发现潜在的域标签。然后,以丰富的域信息为输入,域适配器可以从各个域中的新闻的多个视图中适应汇总歧视性信息。对英语和中文数据集进行的大量离线实验证明了M $^3 $ fend的有效性,在线测试在实践中验证了其优势。我们的代码可在https://github.com/ictmcg/m3fend上找到。
translated by 谷歌翻译
假新闻在各个领域的社交媒体上广泛传播,这导致了政治,灾害和金融等许多方面的现实世界威胁。大多数现有方法专注于单域假新闻检测(SFND),当这些方法应用于多域假新闻检测时,导致不满意的性能。作为新兴领域,多域假新闻检测(MFND)越来越受到关注。但是,数据分布,例如词频率和传播模式,从域变化,即域移位。面对严重领域转变的挑战,现有的假新闻检测技术对于多域场景表现不佳。因此,要求为MFND设计专业型号。在本文中,我们首先为MFND设计了一个带有域名标签的假新闻数据集的基准,即Weibo21,由4,488个假新闻和来自9个不同领域的4,640个真实新闻组成。我们进一步提出了一种通过利用域门来聚合由专家混合提取的多个表示来聚合的多域假新闻检测模型(MDFend)。实验表明,MDFEND可以显着提高多域假新闻检测的性能。我们的数据集和代码可在https://github.com/kennqiang/mdfend-weibo21获得。
translated by 谷歌翻译
In this paper, we present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset. The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions. While significant progress has been made in advancing visual SLAM on small-scale datasets with similar conditions, there is still a lack of unified benchmarks representative of real-world scenarios for autonomous driving. We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance which is crucial to successfully enable autonomous driving in any condition. The data has been collected for more than one year, resulting in more than 300 km of recordings in nine different environments ranging from a multi-level parking garage to urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up to centimeter-level accuracy obtained from the fusion of direct stereo-inertial odometry with RTK GNSS. We evaluate the performance of several state-of-the-art visual odometry and visual localization baseline approaches on the benchmark and analyze their properties. The experimental results provide new insights into current approaches and show promising potential for future research. Our benchmark and evaluation protocols will be available at https://www.4seasons-dataset.com/.
translated by 谷歌翻译
Feedforward fully convolutional neural networks currently dominate in semantic segmentation of 3D point clouds. Despite their great success, they suffer from the loss of local information at low-level layers, posing significant challenges to accurate scene segmentation and precise object boundary delineation. Prior works either address this issue by post-processing or jointly learn object boundaries to implicitly improve feature encoding of the networks. These approaches often require additional modules which are difficult to integrate into the original architecture. To improve the segmentation near object boundaries, we propose a boundary-aware feature propagation mechanism. This mechanism is achieved by exploiting a multi-task learning framework that aims to explicitly guide the boundaries to their original locations. With one shared encoder, our network outputs (i) boundary localization, (ii) prediction of directions pointing to the object's interior, and (iii) semantic segmentation, in three parallel streams. The predicted boundaries and directions are fused to propagate the learned features to refine the segmentation. We conduct extensive experiments on the S3DIS and SensatUrban datasets against various baseline methods, demonstrating that our proposed approach yields consistent improvements by reducing boundary errors. Our code is available at https://github.com/shenglandu/PushBoundary.
translated by 谷歌翻译
Open vocabulary object detection has been greatly advanced by the recent development of vision-language pretrained model, which helps recognize novel objects with only semantic categories. The prior works mainly focus on knowledge transferring to the object proposal classification and employ class-agnostic box and mask prediction. In this work, we propose CondHead, a principled dynamic network design to better generalize the box regression and mask segmentation for open vocabulary setting. The core idea is to conditionally parameterize the network heads on semantic embedding and thus the model is guided with class-specific knowledge to better detect novel categories. Specifically, CondHead is composed of two streams of network heads, the dynamically aggregated head and the dynamically generated head. The former is instantiated with a set of static heads that are conditionally aggregated, these heads are optimized as experts and are expected to learn sophisticated prediction. The latter is instantiated with dynamically generated parameters and encodes general class-specific information. With such a conditional design, the detection model is bridged by the semantic embedding to offer strongly generalizable class-wise box and mask prediction. Our method brings significant improvement to the state-of-the-art open vocabulary object detection methods with very minor overhead, e.g., it surpasses a RegionClip model by 3.0 detection AP on novel categories, with only 1.1% more computation.
translated by 谷歌翻译
Tongue cancer is a common oral cavity malignancy that originates in the mouth and throat. Much effort has been invested in improving its diagnosis, treatment, and management. Surgical removal, chemotherapy, and radiation therapy remain the major treatment for tongue cancer. The survival of patients determines the treatment effect. Previous studies have identified certain survival and risk factors based on descriptive statistics, ignoring the complex, nonlinear relationship among clinical and demographic variables. In this study, we utilize five cutting-edge machine learning models and clinical data to predict the survival of tongue cancer patients after treatment. Five-fold cross-validation, bootstrap analysis, and permutation feature importance are applied to estimate and interpret model performance. The prognostic factors identified by our method are consistent with previous clinical studies. Our method is accurate, interpretable, and thus useable as additional evidence in tongue cancer treatment and management.
translated by 谷歌翻译
In this paper, we propose a large-scale language pre-training for text GENeration using dIffusion modEl, which is named GENIE. GENIE is a pre-training sequence-to-sequence text generation model which combines Transformer and diffusion. The diffusion model accepts the latent information from the encoder, which is used to guide the denoising of the current time step. After multiple such denoise iterations, the diffusion model can restore the Gaussian noise to the diverse output text which is controlled by the input text. Moreover, such architecture design also allows us to adopt large scale pre-training on the GENIE. We propose a novel pre-training method named continuous paragraph denoise based on the characteristics of the diffusion model. Extensive experiments on the XSum, CNN/DailyMail, and Gigaword benchmarks shows that GENIE can achieves comparable performance with various strong baselines, especially after pre-training, the generation quality of GENIE is greatly improved. We have also conduct a lot of experiments on the generation diversity and parameter impact of GENIE. The code for GENIE will be made publicly available.
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
Fine-grained capturing of 3D HOI boosts human activity understanding and facilitates downstream visual tasks, including action recognition, holistic scene reconstruction, and human motion synthesis. Despite its significance, existing works mostly assume that humans interact with rigid objects using only a few body parts, limiting their scope. In this paper, we address the challenging problem of f-AHOI, wherein the whole human bodies interact with articulated objects, whose parts are connected by movable joints. We present CHAIRS, a large-scale motion-captured f-AHOI dataset, consisting of 16.2 hours of versatile interactions between 46 participants and 81 articulated and rigid sittable objects. CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process, as well as realistic and physically plausible full-body interactions. We show the value of CHAIRS with object pose estimation. By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation to tackle the estimation of articulated object poses and shapes during whole-body interactions. Given an image and an estimated human pose, our model first reconstructs the pose and shape of the object, then optimizes the reconstruction according to a learned interaction prior. Under both evaluation settings (e.g., with or without the knowledge of objects' geometries/structures), our model significantly outperforms baselines. We hope CHAIRS will promote the community towards finer-grained interaction understanding. We will make the data/code publicly available.
translated by 谷歌翻译