病理学涉及通过分析人体标本发现疾病的原因的做法。在该领域中最常用的方法,是使用组织学,其基本上是研究和观察细胞和组织中的微观结构。被广泛使用,并转换成数字形式的滑动观看方法来产生高分辨率图像。这使得深学习和机器学习深潜的面积为医学科学这个领域。在本研究中,一个基于神经网络已经提出了血细胞图像的分类成各种类别。当输入图像是通过所提出的架构通过和所有超参数和降比率值是按照提出的算法,那么模型进行分类的血液与图像的95.24%的准确度使用。提出的模型的性能比现有的标准体系结构及工作由不同的研究人员做的更好。因此,模型将使病理系统,这将减少对实验室男人人为错误和日常负荷的发展。反过来,这将帮助病理学家在更有效地开展工作。
translated by 谷歌翻译
癫痫是在4000年全球出现回来的最常见的神经系统疾病之一。这几天它会影响大约5000万人的人。这种疾病的特征是复发癫痫发作。在过去的几十年里,可用于癫痫发作控制的治疗方法已经提高了很多关于医学技术领域的进步。脑电图(EEG)是一种广泛使用的技术,用于监测大脑活动,广泛流行的癫痫发作区域检测。它在手术前进行,并且还在在神经刺激装置中可用的时间操作预测癫痫发作。但在大多数情况下,视觉检查是通过神经病学家进行的,以检测和分类疾病的模式,但这需要大量的域名知识和经验。这一切依次对神经外部产生压力,并导致时间浪费,并降低了他们的准确性和效率。需要一些在信息技术领域的自动化系统,例如在深度学习中使用神经网络,可以帮助神经根学家。在本文中,提出了一种模型,可提供98.33%的准确性,可用于开发自动化系统。发达的系统将显着帮助神经科学家的表现。
translated by 谷歌翻译
癫痫是最常见的神经疾病之一。这种疾病的主要特征是频繁的癫痫发作,这是大脑中的电气不平衡。它通常伴随着身体部位摇动甚至导致(晕倒)。在过去的几年里,许多治疗已经出现了。这些主要涉及使用用于控制癫痫发作的抗癫痫药物。但在70%的病例中,这些药物无效,手术是唯一的解决方案时的状态恶化。所以患者需要在癫痫发作并安全的同时照顾自己。可穿戴的脑电图(EEG)设备已经提出了医学和技术的发展。这些设备有助于分析脑电活动。 EEG有助于定位受影响的皮质区域。最重要的是它可以预测现场的任何癫痫发作。这导致了对有效和高效的癫痫发作预测和诊断系统的需求突然增加。本文提出了一种新的癫痫发作预测和诊断系统EPILnet方法。它是一维(1D)卷积神经网络。 epilnet为五个课程提供79.13%的测试准确性,与相关工程相比,大幅增加约6-7%。开发的Web API有助于将Epilnet带入实际使用。因此,它是患者和医生的综合系统。该系统将有助于患者防止伤害或事故,并通过医院医生提高治疗过程的效率。
translated by 谷歌翻译
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three different loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.
translated by 谷歌翻译
Human behavior understanding requires looking at minute details in the large context of a scene containing multiple input modalities. It is necessary as it allows the design of more human-like machines. While transformer approaches have shown great improvements, they face multiple challenges such as lack of data or background noise. To tackle these, we introduce the Forced Attention (FAt) Transformer which utilize forced attention with a modified backbone for input encoding and a use of additional inputs. In addition to improving the performance on different tasks and inputs, the modification requires less time and memory resources. We provide a model for a generalised feature extraction for tasks concerning social signals and behavior analysis. Our focus is on understanding behavior in videos where people are interacting with each other or talking into the camera which simulates the first person point of view in social interaction. FAt Transformers are applied to two downstream tasks: personality recognition and body language recognition. We achieve state-of-the-art results for Udiva v0.5, First Impressions v2 and MPII Group Interaction datasets. We further provide an extensive ablation study of the proposed architecture.
translated by 谷歌翻译
Learned locomotion policies can rapidly adapt to diverse environments similar to those experienced during training but lack a mechanism for fast tuning when they fail in an out-of-distribution test environment. This necessitates a slow and iterative cycle of reward and environment redesign to achieve good performance on a new task. As an alternative, we propose learning a single policy that encodes a structured family of locomotion strategies that solve training tasks in different ways, resulting in Multiplicity of Behavior (MoB). Different strategies generalize differently and can be chosen in real-time for new tasks or environments, bypassing the need for time-consuming retraining. We release a fast, robust open-source MoB locomotion controller, Walk These Ways, that can execute diverse gaits with variable footswing, posture, and speed, unlocking diverse downstream tasks: crouching, hopping, high-speed running, stair traversal, bracing against shoves, rhythmic dance, and more. Video and code release: https://gmargo11.github.io/walk-these-ways/
translated by 谷歌翻译
Large-scale generative models show an impressive ability to perform a wide range of Natural Language Processing (NLP) tasks using in-context learning, where a few examples are used to describe a task to the model. For Machine Translation (MT), these examples are typically randomly sampled from the development dataset with a similar distribution as the evaluation set. However, it is unclear how the choice of these in-context examples and their ordering impacts the output translation quality. In this work, we aim to understand the properties of good in-context examples for MT in both in-domain and out-of-domain settings. We show that the translation quality and the domain of the in-context examples matter and that 1-shot noisy unrelated example can have a catastrophic impact on output quality. While concatenating multiple random examples reduces the effect of noise, a single good prompt optimized to maximize translation quality on the development dataset can elicit learned information from the pre-trained language model. Adding similar examples based on an n-gram overlap with the test source significantly and consistently improves the translation quality of the outputs, outperforming a strong kNN-MT baseline in 2 out of 4 out-of-domain datasets.
translated by 谷歌翻译
We are interested in neurosymbolic systems consisting of a high-level symbolic layer for explainable prediction in terms of human-intelligible concepts; and a low-level neural layer for extracting symbols required to generate the symbolic explanation. Real data is often imperfect meaning that even if the symbolic theory remains unchanged, we may still need to address the problem of mapping raw data to high-level symbols, each time there is a change in the data acquisition environment or equipment. Manual (re-)annotation of the raw data each time this happens is laborious and expensive; and automated labelling methods are often imperfect, especially for complex problems. NEUROLOG proposed the use of a semantic loss function that allows an existing feature-based symbolic model to guide the extraction of feature-values from raw data, using `abduction'. However, the experiments demonstrating the use of semantic loss through abduction appear to rely heavily on a domain-specific pre-processing step that enables a prior delineation of feature locations in the raw data. We examine the use of semantic loss in domains where such pre-processing is not possible, or is not obvious. We show that without any prior information about the features, the NEUROLOG approach can continue to predict accurately even with substantially incorrect feature predictions. We show also that prior information about the features in the form of even imperfect pre-training can help correct this situation. These findings are replicated on the original problem considered by NEUROLOG, without the use of feature-delineation. This suggests that symbolic explanations constructed for data in a domain could be re-used in a related domain, by `feature-adaptation' of pre-trained neural extractors using the semantic loss function constrained by abductive feedback.
translated by 谷歌翻译
Recent improvements in conditional generative modeling have made it possible to generate high-quality images from language descriptions alone. We investigate whether these methods can directly address the problem of sequential decision-making. We view decision-making not through the lens of reinforcement learning (RL), but rather through conditional generative modeling. To our surprise, we find that our formulation leads to policies that can outperform existing offline RL approaches across standard benchmarks. By modeling a policy as a return-conditional diffusion model, we illustrate how we may circumvent the need for dynamic programming and subsequently eliminate many of the complexities that come with traditional offline RL. We further demonstrate the advantages of modeling policies as conditional diffusion models by considering two other conditioning variables: constraints and skills. Conditioning on a single constraint or skill during training leads to behaviors at test-time that can satisfy several constraints together or demonstrate a composition of skills. Our results illustrate that conditional generative modeling is a powerful tool for decision-making.
translated by 谷歌翻译
Detection and recognition of a licence plate is important when automating weighbridge services. While many large databases are available for Latin and Chinese alphanumeric license plates, data for Indian License Plates is inadequate. In particular, databases of Indian commercial truck license plates are inadequate, despite the fact that commercial vehicle license plate recognition plays a profound role in terms of logistics management and weighbridge automation. Moreover, models to recognise license plates are not effectively able to generalise to such data due to its challenging nature, and due to the abundant frequency of handwritten license plates, leading to the usage of diverse font styles. Thus, a database and effective models to recognise and detect such license plates are crucial. This paper provides a database on commercial truck license plates, and using state-of-the-art models in real-time object Detection: You Only Look Once Version 7, and SceneText Recognition: Permuted Autoregressive Sequence Models, our method outperforms the other cited references where the maximum accuracy obtained was less than 90%, while we have achieved 95.82% accuracy in our algorithm implementation on the presented challenging license plate dataset. Index Terms- Automatic License Plate Recognition, character recognition, license plate detection, vision transformer.
translated by 谷歌翻译