癫痫是最常见的神经疾病之一。这种疾病的主要特征是频繁的癫痫发作,这是大脑中的电气不平衡。它通常伴随着身体部位摇动甚至导致(晕倒)。在过去的几年里,许多治疗已经出现了。这些主要涉及使用用于控制癫痫发作的抗癫痫药物。但在70%的病例中,这些药物无效,手术是唯一的解决方案时的状态恶化。所以患者需要在癫痫发作并安全的同时照顾自己。可穿戴的脑电图(EEG)设备已经提出了医学和技术的发展。这些设备有助于分析脑电活动。 EEG有助于定位受影响的皮质区域。最重要的是它可以预测现场的任何癫痫发作。这导致了对有效和高效的癫痫发作预测和诊断系统的需求突然增加。本文提出了一种新的癫痫发作预测和诊断系统EPILnet方法。它是一维(1D)卷积神经网络。 epilnet为五个课程提供79.13%的测试准确性,与相关工程相比,大幅增加约6-7%。开发的Web API有助于将Epilnet带入实际使用。因此,它是患者和医生的综合系统。该系统将有助于患者防止伤害或事故,并通过医院医生提高治疗过程的效率。
translated by 谷歌翻译
癫痫是在4000年全球出现回来的最常见的神经系统疾病之一。这几天它会影响大约5000万人的人。这种疾病的特征是复发癫痫发作。在过去的几十年里,可用于癫痫发作控制的治疗方法已经提高了很多关于医学技术领域的进步。脑电图(EEG)是一种广泛使用的技术,用于监测大脑活动,广泛流行的癫痫发作区域检测。它在手术前进行,并且还在在神经刺激装置中可用的时间操作预测癫痫发作。但在大多数情况下,视觉检查是通过神经病学家进行的,以检测和分类疾病的模式,但这需要大量的域名知识和经验。这一切依次对神经外部产生压力,并导致时间浪费,并降低了他们的准确性和效率。需要一些在信息技术领域的自动化系统,例如在深度学习中使用神经网络,可以帮助神经根学家。在本文中,提出了一种模型,可提供98.33%的准确性,可用于开发自动化系统。发达的系统将显着帮助神经科学家的表现。
translated by 谷歌翻译
及时诊断对于拯救癫痫患者的寿命非常重要。在过去的几年里,癫痫有很多治疗方法。这些治疗需要使用抗癫痫药物,但在控制癫痫发作频率方面无效。需要使用手术去除受影响的区域。脑电图(EEG)是一种广泛使用的技术,用于监测大脑活动,广泛流行的癫痫发作区域检测。它在手术前使用,以定位受影响区域。使用EEG图表的手动过程是耗时,需要深入的专业知识。在本文中,已经提出了一种模型,其保留了文本一维向量的形式的EEG信号的真实性质。拟议的模型实现了Bonn大学数据集的艺术表现状态,分别为所有五类脑电图数据分类,分别为平均灵敏度,特异性为81%和81.4%。同样对于二进制分类,特异性和敏感性的99.9%,比分数为99.5%,而不是其他研究人员使用的2D模型。因此,开发系统将显着帮助神经外科,从而提高其性能。
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
由于癫痫发生是由于大脑的异常活性引起的,因此癫痫发作会影响您的大脑处理的任何过程。癫痫发作的一些体征和症状包括混乱,异常凝视以及快速,突然和无法控制的手动运动。癫痫发作检测方法涉及神经检查,血液检查,神经心理学检查和神经影像学方法。其中,神经影像学的方式受到了专业医生的极大关注。一种促进癫痫发作准确,快速诊断的方法是基于深度学习(DL)和神经成像方式采用计算机辅助诊断系统(CADS)。本文研究了利用神经影像学方式利用用于癫痫发作检测和预测的DL方法的全面概述。首先,讨论了用于使用神经影像模式的癫痫发作检测和预测的基于DL的CAD。此外,还包括了用于癫痫发作检测和预测的各种数据集的描述,预处理算法和DL模型。然后,已经介绍了有关康复工具的研究,其中包含脑部计算机接口(BCI),可植入,云计算,物联网(IoT),在现场可编程栅极阵列(FPGA)上的DL技术实现,等等。讨论部分是关于癫痫发作检测和预测研究之间的比较。使用神经影像模式和DL模型的癫痫发作检测和预测中最重要的挑战。此外,已经提出了数据集,DL,康复和硬件模型领域的未来工作建议。最后一部分致力于结论,并在该领域结合了最重要的发现。
translated by 谷歌翻译
本文介绍了机器学习推动的各种脑电图应用程序和当前的脑电图市场生态系统。使用脑电图越来越多的开放医疗和健康数据集鼓励数据驱动的研究,并有望通过知识发现和机器学习数据科学算法开发来改善患者护理的神经病学。这项工作导致各种脑电图发展,目前构成了新的脑电图市场。本文试图对脑电图市场进行全面的调查,并涵盖脑电图的六个重要应用,包括诊断/筛查,药物开发,神经营销,日常健康,元元和年龄/残疾援助。这项调查的重点是研究领域与商业市场之间的比较和对比。我们的调查指出了脑电图的当前局限性,并指示了上面列出的每个脑电图应用程序的研究和商机的未来方向。根据我们的调查,对基于机器学习的脑电图应用程序的更多研究将导致与脑电图相关的更强大的市场。越来越多的公司将使用研究技术并将其应用于现实生活中。随着与EEG相关的市场的增长,与EEG相关的设备将收集更多的脑电图数据,并且将有更多的EEG数据供研究人员在他们的研究中使用,以作为一个良性周期。我们的市场分析表明,在上面列出的六个应用程序中使用脑电图数据和机器学习有关的研究指向脑电图生态系统和机器学习世界的增长和发展的明确趋势。
translated by 谷歌翻译
与经典信号处理和基于机器学习的框架相比,基于深度学习的方法基于深度学习的方法显着提高了分类准确性。但大多数是由于脑电图数据中存在的受试者间可变性而无法概括对象无关的任务的主题依赖性研究。在这项工作中,提出了一种新的深度学习框架,其能够进行独立的情感识别,由两部分组成。首先,提出了具有通道关注自动泊车的无监督的长短期存储器(LSTM),用于获取主体不变的潜航向量子空间,即每个人的EEG数据中存在的内部变量。其次,提出了一种具有注意力框架的卷积神经网络(CNN),用于对从提出的LSTM获得的编码的较低的潜在空间表示对具有通道 - 注意自身形拓的编码的低潜空间表示的任务。通过注意机制,所提出的方法可以突出EEG信号的显着时间段,这有助于所考虑的情绪,由结果验证。已经使用公共数据集进行了验证的方法,用于EEG信号,例如Deap DataSet,SEED数据集和CHB-MIT数据集。所提出的端到端深度学习框架消除了不同手工工程特征的要求,并提供了一个单一的全面任务不可知性EEG分析工具,能够对主题独立数据进行各种EEG分析。
translated by 谷歌翻译
医学事物互联网(IOMT)允许使用传感器收集生理数据,然后将其传输到远程服务器,这使医生和卫生专业人员可以连续,永久地分析这些数据,并在早期阶段检测疾病。但是,使用无线通信传输数据将其暴露于网络攻击中,并且该数据的敏感和私人性质可能代表了攻击者的主要兴趣。在存储和计算能力有限的设备上使用传统的安全方法无效。另一方面,使用机器学习进行入侵检测可以对IOMT系统的要求提供适应性的安全响应。在这种情况下,对基于机器学习(ML)的入侵检测系统如何解决IOMT系统中的安全性和隐私问题的全面调查。为此,提供了IOMT的通用三层体系结构以及IOMT系统的安全要求。然后,出现了可能影响IOMT安全性的各种威胁,并确定基于ML的每个解决方案中使用的优势,缺点,方法和数据集。最后,讨论了在IOMT的每一层中应用ML的一些挑战和局限性,这些挑战和局限性可以用作未来的研究方向。
translated by 谷歌翻译
呼吸声分类中的问题已在去年的临床科学家和医学研究员团体中获得了良好的关注,以诊断Covid-19疾病。迄今为止,各种模型的人工智能(AI)进入了现实世界,从人类生成的声音等人生成的声音中检测了Covid-19疾病,例如语音/言语,咳嗽和呼吸。实现卷积神经网络(CNN)模型,用于解决基于人工智能(AI)的机器上的许多真实世界问题。在这种情况下,建议并实施一个维度(1D)CNN,以诊断Covid-19的呼吸系统疾病,例如语音,咳嗽和呼吸。应用基于增强的机制来改善Covid-19声音数据集的预处理性能,并使用1D卷积网络自动化Covid-19疾病诊断。此外,使用DDAE(数据去噪自动编码器)技术来产生诸如输入功能的深声特征,而不是采用MFCC(MEL频率跳跃系数)的标准输入,并且它更好地执行比以前的型号的准确性和性能。
translated by 谷歌翻译
如今,提出了几种深度学习方法来应对癫痫发作预测的挑战。但是,由于其大型硬件和相应的高功率消耗,这些方法仍然无法作为可植入或有效的可穿戴设备的一部分实现。他们通常需要复杂的功能提取过程,用于存储高精度参数的大存储器和复杂的算术计算,从而大大增加了所需的硬件资源。此外,可用的预测性能差,因为它们直接从图像识别应用程序中采用网络体系结构无法准确考虑EEG信号的特征。我们在本文中提出了一个适合二进制卷积神经网络(BSDCNN)的硬件友好网络,用于癫痫发作预测。 BSDCNN利用1D卷积内核来提高预测性能。除了第一层外,所有参数均已二进制以减少所需的计算和存储。在美国癫痫社会癫痫发作预测挑战(AES)数据集和CHB-MIT方面,曲线,灵敏度和虚假预测率的总面积达到0.915、89.26%,0.117/h和0.970,94.69%,0.095/h。所提出的体系结构的表现优于最新作品,同时提供了7.2和25.5倍的参数和计算大小。
translated by 谷歌翻译
精神分裂症(SZ)是一种精神障碍,由于大脑中特定化学品的分泌,一些脑区的功能失去平衡,导致思想,行动和情绪之间缺乏协调。本研究提供了通过脑电图(EEG)信号的自动化SZ诊断的各种智能深度学习(DL)方法。将得到的结果与传统智能方法的结果进行比较。为了实施拟议的方法,已经使用了波兰华沙精神病学与神经学研究所的数据集。首先,将EEG信号分成25秒的时间框架,然后通过Z分数或标准L2标准化。在分类步骤中,考虑通过EEG信号考虑两种不同的方法进行SZ诊断。在该步骤中,首先通过传统的机器学习方法进行EEG信号的分类,例如,支持向量机,K-CORMONT邻居,决策树,NA \“IVE贝叶斯,随机森林,极其随机树木和袋装。各种提出的DL模型,即长的短期存储器(LSTMS),一维卷积网络(1D-CNNS)和1D-CNN-LSTMS。在此步骤中,实现并比较了DL模型具有不同的激活功能。在提议的DL模型中,CNN-LSTM架构具有最佳性能。在这种架构中,使用具有Z分数和L2组合标准化的Relu激活功能。所提出的CNN-LSTM模型具有达到99.25%的准确度,比该领域的大多数前研究的结果更好。值得一提的是,为了执行所有模拟,已经使用了具有k = 5的k折叠交叉验证方法。
translated by 谷歌翻译
本文提出了一种基于离散小波变换(DWT)和机器学习分类器的癫痫检测方法。这里DWT已被用于特征提取,因为它提供了更好地分解了不同频带中的信号。首先,DWT已被应用于EEG信号以提取细节和近似系数或不同的子带。在提取系数之后,主成分分析(PCA)已经应用于不同的子带,然后使用特征级融合技术来提取低维特征空间中的重要特征。三个分类器即:支持向量机(SVM)分类器,K-Cirelte-邻(KNN)分类器和NAIVE Bayes(NB)分类器已用于分类EEG信号的工作中。该方法在Bonn数据库上进行了测试,并为KNN,SVM,NB分类器提供最多100%的识别精度。
translated by 谷歌翻译
心血管疾病(CVD)是全球死亡的第一大原因。尽管有越来越多的证据表明心房颤动(AF)与各种CVD有着密切的关联,但这种心律不齐通常是使用心电图(ECG)诊断的,这是一种无风险,无侵入性和具有成本效益的工具。在任何威胁生命的疾病/疾病发展之前,不断和远程监视受试者的心电图信息迅速诊断和及时对AF进行预处理的潜力。最终,可以降低CVD相关的死亡率。在此手稿中,展示了体现可穿戴心电图设备,移动应用程序和后端服务器的个性化医疗系统的设计和实施。该系统不断监视用户的心电图信息,以提供个性化的健康警告/反馈。用户能够通过该系统与他们的配对健康顾问进行远程诊断,干预措施等。已经评估了实施的可穿戴ECG设备,并显示出极好的一致性(CVRMS = 5.5%),可接受的一致性(CVRMS = CVRMS = CVRMS = 12.1%),可忽略不计的RR间隙错误(<1.4%)。为了提高可穿戴设备的电池寿命,提出了使用ECG信号的准周期特征来实现压缩的有损压缩模式。与公认的架构相比,它在压缩效率和失真方面优于其他模式,并在MIT-BIH数据库中以ECG信号的某个PRD或RMSE达到了至少2倍的Cr。为了在拟议系统中实现自动化AF诊断/筛查,开发了基于重新系统的AF检测器。对于2017年Physionet CINC挑战的ECG记录,该AF探测器获得了平均测试F1 = 85.10%和最佳测试F1 = 87.31%,表现优于最先进。
translated by 谷歌翻译
由于照顾不断增长的老年人口的医疗和财务需求,对跌倒的及时可靠发现是一个大型且快速增长的研究领域。在过去的20年中,高质量硬件(高质量传感器和AI微芯片)和软件(机器学习算法)技术的可用性通过为开发人员提供开发此类系统的功能,从而成为这项研究的催化剂。这项研究开发了多个应用组件,以研究秋季检测系统的发展挑战和选择,并为未来的研究提供材料。使用此方法开发的智能应用程序通过秋季检测模型实验和模型移动部署的结果验证。总体上表现最好的模型是标准化的RESNET152,并带有2S窗口尺寸的调整数据集,可实现92.8%的AUC,7.28%的灵敏度和98.33%的特异性。鉴于这些结果很明显,加速度计和心电图传感器对秋季检测有益,并允许跌倒和其他活动之间的歧视。由于所得数据集中确定的弱点,这项研究为改进的空间留下了很大的改进空间。这些改进包括在跌落的临界阶段使用标签协议,增加数据集样品的数量,改善测试主题表示形式,并通过频域预处理进行实验。
translated by 谷歌翻译
数字化和自动化方面的快速进步导致医疗保健的加速增长,从而产生了新型模型,这些模型正在创造新的渠道,以降低成本。 Metaverse是一项在数字空间中的新兴技术,在医疗保健方面具有巨大的潜力,为患者和医生带来了现实的经验。荟萃分析是多种促成技术的汇合,例如人工智能,虚拟现实,增强现实,医疗设备,机器人技术,量子计算等。通过哪些方向可以探索提供优质医疗保健治疗和服务的新方向。这些技术的合并确保了身临其境,亲密和个性化的患者护理。它还提供自适应智能解决方案,以消除医疗保健提供者和接收器之间的障碍。本文对医疗保健的荟萃分析提供了全面的综述,强调了最新技术的状态,即采用医疗保健元元的能力技术,潜在的应用程序和相关项目。还确定了用于医疗保健应用的元元改编的问题,并强调了合理的解决方案作为未来研究方向的一部分。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
病理学涉及通过分析人体标本发现疾病的原因的做法。在该领域中最常用的方法,是使用组织学,其基本上是研究和观察细胞和组织中的微观结构。被广泛使用,并转换成数字形式的滑动观看方法来产生高分辨率图像。这使得深学习和机器学习深潜的面积为医学科学这个领域。在本研究中,一个基于神经网络已经提出了血细胞图像的分类成各种类别。当输入图像是通过所提出的架构通过和所有超参数和降比率值是按照提出的算法,那么模型进行分类的血液与图像的95.24%的准确度使用。提出的模型的性能比现有的标准体系结构及工作由不同的研究人员做的更好。因此,模型将使病理系统,这将减少对实验室男人人为错误和日常负荷的发展。反过来,这将帮助病理学家在更有效地开展工作。
translated by 谷歌翻译
新生儿癫痫发作是一种通常遇到的神经系统条件。它们是严重神经障碍的第一个临床迹象。因此,需要快速识别和治疗以防止严重的死亡。在神经学领域中使用脑电图(EEG)允许精确地诊断几种医疗条件。然而,解释EEG信号需要高度专业人员的注意,因为婴儿脑在新生儿期间发育不起。检测癫痫发作可能会妨碍对婴儿的神经认知发展的负面影响。近年来,使用机器学习算法的新生儿癫痫发作检测已经获得牵引力。由于需要在癫痫发作检测的情况下对生物信号进行计算廉价的生物信号,因此本研究提供了一种基于机器学习(ML)的架构,其与以前的模型相当的预测性能,但具有最小级别配置。拟议的分类器在赫尔辛基大学医院录制的尼古尔缉获量的公共数据数据上进行了培训和测试。我们的架构实现了87%的最佳敏感性,比本研究中选择的标准ML型号的6%增加了6%。 ML分类器的模型大小优化为仅为4.84 kB,最小预测时间为182.61毫秒,从而使其部署在可穿戴的超边设备上,以便快速准确,并避免基于云的需求和其他这种穷举计算方法。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译