Only limited studies and superficial evaluations are available on agents' behaviors and roles within a Multi-Agent System (MAS). We simulate a MAS using Reinforcement Learning (RL) in a pursuit-evasion (a.k.a predator-prey pursuit) game, which shares task goals with target acquisition, and we create different adversarial scenarios by replacing RL-trained pursuers' policies with two distinct (non-RL) analytical strategies. Using heatmaps of agents' positions (state-space variable) over time, we are able to categorize an RL-trained evader's behaviors. The novelty of our approach entails the creation of an influential feature set that reveals underlying data regularities, which allow us to classify an agent's behavior. This classification may aid in catching the (enemy) targets by enabling us to identify and predict their behaviors, and when extended to pursuers, this approach towards identifying teammates' behavior may allow agents to coordinate more effectively.
translated by 谷歌翻译
现有的分布式协作多智能体增强学习(MARL)框架通常假设通过共识算法估计全球奖励的无向协调图和通信图。这种框架可能导致昂贵的通信成本,并且由于全球共识的要求,可扩展性差。在这项工作中,我们使用定向协调图研究Marls,并提出了一种分布式RL算法,其中本地策略评估基于本地值函数。通过与其邻居通过定向的学习诱导的通信图来实现每个代理的本地值函数,而不使用任何共识算法。采用基于参数扰动的零顺序优化(动物园)方法来实现梯度估计。通过与现有的基于动物园的RL算法进行比较,我们表明我们提出的分布式RL算法可确保高可扩展性。示出了分布式资源分配示例来说明我们算法的有效性。
translated by 谷歌翻译
The availability of large-scale image captioning and visual question answering datasets has contributed significantly to recent successes in vision-and-language pretraining. However, these datasets are often collected with overrestrictive requirements inherited from their original target tasks (e.g., image caption generation), which limit the resulting dataset scale and diversity. We take a step further in pushing the limits of vision-and-language pretraining data by relaxing the data collection pipeline used in Conceptual Captions 3M (CC3M) [70] and introduce the Conceptual 12M (CC12M), a dataset with 12 million image-text pairs specifically meant to be used for visionand-language pre-training. We perform an analysis of this dataset and benchmark its effectiveness against CC3M on multiple downstream tasks with an emphasis on long-tail visual recognition. Our results clearly illustrate the benefit of scaling up pre-training data for vision-and-language tasks, as indicated by the new state-of-the-art results on both the nocaps and Conceptual Captions benchmarks. 1
translated by 谷歌翻译
图像标题模型通常缺乏考虑用户兴趣的能力,通常默认为试图平衡可读性,信息性和信息过载的全局描述。另一方面,VQA模型通常缺乏提供长描述性答案的能力,同时期望文本问题非常精确。我们介绍一种控制图像标题应该专注于的概念的方法,使用称为指导文本的额外输入,该概念是指图像中的可接近或未放置的概念。我们的模型包括一个基于变换器的多模式编码器,它使用引导文本与全局和对象级别图像功能一起导出用于生成引导标题的早期融合表示。虽然在视觉基因组数据上培训的模型时,在使用自动对象标签的引导时具有适应良好的域的域中优势,但我们发现在概念标题上培训的引导标题模型概括为域外图像和引导文本。我们的人为评估结果表明,尝试野外引导的图像标题需要访问大,不受限制的域训练数据集,并且增加的样式分集(即使不增加唯一令牌的数量)是提高性能的关键因素。
translated by 谷歌翻译
Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations and longer training times. To address these problems, we present two parameterreduction techniques to lower memory consumption and increase the training speed of BERT (Devlin et al., 2019). Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large. The code and the pretrained models are available at https://github.com/google-research/ALBERT. * Work done as an intern at Google Research, driving data processing and downstream task evaluations.
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
Large training data and expensive model tweaking are standard features of deep learning for images. As a result, data owners often utilize cloud resources to develop large-scale complex models, which raises privacy concerns. Existing solutions are either too expensive to be practical or do not sufficiently protect the confidentiality of data and models. In this paper, we study and compare novel \emph{image disguising} mechanisms, DisguisedNets and InstaHide, aiming to achieve a better trade-off among the level of protection for outsourced DNN model training, the expenses, and the utility of data. DisguisedNets are novel combinations of image blocktization, block-level random permutation, and two block-level secure transformations: random multidimensional projection (RMT) and AES pixel-level encryption (AES). InstaHide is an image mixup and random pixel flipping technique \cite{huang20}. We have analyzed and evaluated them under a multi-level threat model. RMT provides a better security guarantee than InstaHide, under the Level-1 adversarial knowledge with well-preserved model quality. In contrast, AES provides a security guarantee under the Level-2 adversarial knowledge, but it may affect model quality more. The unique features of image disguising also help us to protect models from model-targeted attacks. We have done an extensive experimental evaluation to understand how these methods work in different settings for different datasets.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译