诸如Codebert之类的变压器网络已经为基准数据集中的代码克隆检测获得了出色的结果,因此可以假设已经解决了此任务。但是,代码克隆检测并不是一项琐碎的任务。尤其是语义代码克隆,要检测到具有挑战性。我们表明,Codebert的普遍性通过评估BigCloneBench的Java代码克隆的两个不同子集来降低。当我们评估与模型构建不同的代码段和功能ID时,我们会观察到F1分数的显着下降。
translated by 谷歌翻译
对联合学习系统的梯度反转攻击从交换的梯度信息中重建客户培训数据。为了防止这种攻击,提出了各种防御机制。但是,它们通常会导致隐私和模型效用之间的不可接受的权衡。最近的观察结果表明,如果添加到神经网络中,辍学可以减轻梯度泄漏并改善模型实用性。不幸的是,这种现象尚未系统地研究。在这项工作中,我们彻底分析了辍学对迭代梯度反转攻击的影响。我们发现,由于模型训练过程中辍学引起的随机性,最先进的攻击状态无法重建客户数据。尽管如此,我们认为,如果在攻击优化期间对辍学引起的随机性进行了充分的建模,则辍学者不会提供可靠的保护。因此,我们提出了一种新型的辍学反转攻击(DIA),该攻击(DIA)共同优化了客户数据和辍学蒙版,以近似随机客户端模型。我们对我们对四个开创模型架构的攻击和三个图像分类数据集进行了广泛的系统评估。我们发现,我们提出的攻击绕过了似乎是由辍学引起的保护,并以高保真度重建客户数据。我们的工作表明,不能假定仅仅诱导模型架构变化的隐私变化以可靠地保护梯度泄漏,因此应与互补的防御机制结合使用。
translated by 谷歌翻译
利用梯度泄漏以重建据称为私人培训数据,梯度反演攻击是神经网络协作学习的无处不在威胁。为了防止梯度泄漏而不会遭受模型绩效严重损失的情况,最近的工作提出了一个基于变化模型作为任意模型体系结构的扩展的隐私增强模块(预编码)。在这项工作中,我们研究了预言对梯度反转攻击的影响,以揭示其基本的工作原理。我们表明,各变化建模会引起预科及其随后的层梯度的随机性,从而阻止梯度攻击的收敛性。通过在攻击优化期间有目的地省略那些随机梯度,我们制定了一种可以禁用Precode隐私保护效果的攻击。为了确保对这种有针对性攻击的隐私保护,我们将部分扰动(PPP)提出,作为变异建模和部分梯度扰动的战略组合。我们对四个开创性模型架构和两个图像分类数据集进行了广泛的实证研究。我们发现所有架构都容易梯度泄漏,可以通过PPP预防。因此,我们表明我们的方法需要较小的梯度扰动才能有效地保留隐私而不会损害模型性能。
translated by 谷歌翻译
We consider the contextual bandit problem on general action and context spaces, where the learner's rewards depend on their selected actions and an observable context. This generalizes the standard multi-armed bandit to the case where side information is available, e.g., patients' records or customers' history, which allows for personalized treatment. We focus on consistency -- vanishing regret compared to the optimal policy -- and show that for large classes of non-i.i.d. contexts, consistency can be achieved regardless of the time-invariant reward mechanism, a property known as universal consistency. Precisely, we first give necessary and sufficient conditions on the context-generating process for universal consistency to be possible. Second, we show that there always exists an algorithm that guarantees universal consistency whenever this is achievable, called an optimistically universal learning rule. Interestingly, for finite action spaces, learnable processes for universal learning are exactly the same as in the full-feedback setting of supervised learning, previously studied in the literature. In other words, learning can be performed with partial feedback without any generalization cost. The algorithms balance a trade-off between generalization (similar to structural risk minimization) and personalization (tailoring actions to specific contexts). Lastly, we consider the case of added continuity assumptions on rewards and show that these lead to universal consistency for significantly larger classes of data-generating processes.
translated by 谷歌翻译
In this paper, we present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset. The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions. While significant progress has been made in advancing visual SLAM on small-scale datasets with similar conditions, there is still a lack of unified benchmarks representative of real-world scenarios for autonomous driving. We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance which is crucial to successfully enable autonomous driving in any condition. The data has been collected for more than one year, resulting in more than 300 km of recordings in nine different environments ranging from a multi-level parking garage to urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up to centimeter-level accuracy obtained from the fusion of direct stereo-inertial odometry with RTK GNSS. We evaluate the performance of several state-of-the-art visual odometry and visual localization baseline approaches on the benchmark and analyze their properties. The experimental results provide new insights into current approaches and show promising potential for future research. Our benchmark and evaluation protocols will be available at https://www.4seasons-dataset.com/.
translated by 谷歌翻译
Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
Large language models have ushered in a golden age of semantic parsing. The seq2seq paradigm allows for open-schema and abstractive attribute and relation extraction given only small amounts of finetuning data. Language model pretraining has simultaneously enabled great strides in natural language inference, reasoning about entailment and implication in free text. These advances motivate us to construct ImPaKT, a dataset for open-schema information extraction, consisting of around 2500 text snippets from the C4 corpus, in the shopping domain (product buying guides), professionally annotated with extracted attributes, types, attribute summaries (attribute schema discovery from idiosyncratic text), many-to-one relations between compound and atomic attributes, and implication relations. We release this data in hope that it will be useful in fine tuning semantic parsers for information extraction and knowledge base construction across a variety of domains. We evaluate the power of this approach by fine-tuning the open source UL2 language model on a subset of the dataset, extracting a set of implication relations from a corpus of product buying guides, and conducting human evaluations of the resulting predictions.
translated by 谷歌翻译
Dialogue models are able to generate coherent and fluent responses, but they can still be challenging to control and may produce non-engaging, unsafe results. This unpredictability diminishes user trust and can hinder the use of the models in the real world. To address this, we introduce DialGuide, a novel framework for controlling dialogue model behavior using natural language rules, or guidelines. These guidelines provide information about the context they are applicable to and what should be included in the response, allowing the models to generate responses that are more closely aligned with the developer's expectations and intent. We evaluate DialGuide on three tasks in open-domain dialogue response generation: guideline selection, response generation, and response entailment verification. Our dataset contains 10,737 positive and 15,467 negative dialogue context-response-guideline triplets across two domains - chit-chat and safety. We provide baseline models for the tasks and benchmark their performance. We also demonstrate that DialGuide is effective in the dialogue safety domain, producing safe and engaging responses that follow developer guidelines.
translated by 谷歌翻译
Prior work has shown that it is possible to expand pretrained Masked Language Models (MLMs) to new languages by learning a new set of embeddings, while keeping the transformer body frozen. Despite learning a small subset of parameters, this approach is not compute-efficient, as training the new embeddings requires a full forward and backward pass over the entire model. In this work, we propose mini-model adaptation, a compute-efficient alternative that builds a shallow mini-model from a fraction of a large model's parameters. New language-specific embeddings can then be efficiently trained over the mini-model, and plugged into the aligned large model for rapid cross-lingual transfer. We explore two approaches to learn mini-models: MiniJoint, which jointly pretrains the primary model and the mini-model using a single transformer with a secondary MLM head at a middle layer; and MiniPost, where we start from a regular pretrained model and build a mini-model by extracting and freezing a few layers and learning a small number of parameters on top. Experiments on XNLI, MLQA and PAWS-X show that mini-model adaptation matches the performance of the standard approach using up to 2.4x less compute.
translated by 谷歌翻译