Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.
translated by 谷歌翻译
我们研究了量子多体系统的哈密顿量的参数的问题,鉴于对系统的访问有限。在这项工作中,我们基于最近通过衍生估计进行哈密顿学习的方法。我们提出了一项协议,以改善先前作品的缩放依赖性,尤其是在与哈密顿式结构有关的参数方面(例如,其locality $ k $)。此外,通过在我们的协议的性能上得出精确的界限,我们能够在我们的学习协议中为高参数的理论上最佳设置提供精确的数值处方,例如最大进化时间(当统一动力学学习时)或最低温度(当与吉布斯国家学习时)。多亏了这些改进,我们的协议对于大型问题很实际:我们通过对80克系统的协议进行数值模拟来证明这一点。
translated by 谷歌翻译
在标准量子传感(QS)任务中,One旨在通过系统测量结果估算未知参数$ \ theta $,该参数$ \ theta $编码为$ n $ qubit的探测态。此任务的成功取决于将参数的变化与系统响应$ \ MATHCAL {r}(\ theta)$(即测量结果的变化)相关联的能力。对于简单的情况,$ \ Mathcal {r}(\ theta)$的形式是已知的,但是对于现实情况而言,不能说相同,因为不存在一般的封闭式表达式。在这项工作中,我们为QS提供了基于推理的方案。我们表明,对于一般的编码统一家庭,$ \ Mathcal {r}(\ theta)$只能通过仅在$ 2N+1 $参数下测量系统响应来充分表征。反过来,这使我们能够在测量响应中推断未知参数的值,并确定感应方案的灵敏度,这表征了其整体性能。我们表明,如果一个人以许多镜头来测量系统响应,则推理错误的可能性很小,但仅缩放为$ \ omega(\ log^3(n)/\ delta^2) $。此外,所提供的框架可以广泛应用,因为它对于任意探针状态和测量方案仍然有效,甚至在存在量子噪声的情况下也保持。我们还讨论了如何将结果扩展到统一家庭之外。最后,为了展示我们的方法,我们在实际量子硬件和数值模拟中实现了它的QS任务。
translated by 谷歌翻译
量子机学习(QML)模型旨在从量子状态中编码的数据中学习。最近,已经表明,几乎没有归纳偏差的模型(即,对模型中嵌入的问题没有假设)可能存在训练性和概括性问题,尤其是对于大问题。因此,开发编码与当前问题有关的信息的方案是至关重要的。在这项工作中,我们提出了一个简单但功能强大的框架,其中数据中的基本不向导用于构建QML模型,该模型通过构造尊重这些对称性。这些所谓的组不变模型产生的输出在对称组$ \ mathfrak {g} $的任何元素的动作下保持不变。我们提出了理论结果,基于$ \ mathfrak {g} $ - 不变型模型的设计,并通过几个范式QML分类任务来体现其应用程序,包括$ \ mathfrak {g} $是一个连续的谎言组,也是一个lie group,也是一个。离散对称组。值得注意的是,我们的框架使我们能够以一种优雅的方式恢复文献的几种知名算法,并发现了新的算法。综上所述,我们期望我们的结果将有助于为QML模型设计采用更多几何和群体理论方法铺平道路。
translated by 谷歌翻译
作为量子优势的应用,对动态模拟和量子机学习(QML)的关注很大,而使用QML来增强动态模拟的可能性尚未得到彻底研究。在这里,我们开发了一个框架,用于使用QML方法模拟近期量子硬件上的量子动力学。我们使用概括范围,即机器学习模型在看不见的数据上遇到的错误,以严格分析此框架内算法的训练数据要求。这提供了一种保证,就量子和数据要求而言,我们的算法是资源有效的。我们的数字具有问题大小的有效缩放,我们模拟了IBMQ-Bogota上的Trotterization的20倍。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
高品质,大型数据集在古典机器学习的发展和成功中发挥了至关重要的作用。量子机器学习(QML)是一个新的领域,旨在使用量子计算机进行数据分析,希望获得某种量子的量子优势。虽然大多数提议的QML架构是使用经典数据集的基准测试,但仍存在古典数据集上的QML是否会实现这样的优势。在这项工作中,我们争辩说,应该使用由量子状态组成的量子数据集。为此目的,我们介绍了由量子状态组成的Ntangled DataSet,其数量和多分纠缠的类型。我们首先展示如何培训量子神经网络,以在Ntangled DataSet中生成状态。然后,我们使用Ntangled DataSet来获得用于监督学习分类任务的基准测试QML模型。我们还考虑一个基于替代的纠缠基数据集,其是可扩展的,并且由量子电路准备的状态与不同深度的状态组成。作为我们的结果的副产品,我们介绍了一种用于产生多重石纠缠态的新方法,为量子纠缠理论提供量子神经网络的用例。
translated by 谷歌翻译
优化参数化量子电路(PQC)是使用近期量子计算机的领先方法。但是,对于PQC的成本函数景观知之甚少,这阻碍了量子意识到的优化器的进展。在这项工作中,我们研究了PQCS已观察到的三种不同景观特征之间的联系:(1)指数呈指数消失的梯度(称为贫瘠的高原),(2)关于平均值的成本成本集中,以及(3)(3)指数的狭窄小小的(称为狭窄的峡谷)。我们在分析上证明,这三个现象一起出现,即当发生一个现象时,其他两个现象也是如此。该结果的一个关键含义是,可以通过成本差而不是通过计算更昂贵的梯度来数字诊断贫瘠的高原。更广泛地说,我们的工作表明,量子力学排除了某些成本景观(否则在数学上可能是可能的),因此从量子基础的角度来看,我们的结果很有趣。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译