我们提出了一种针对8位神经网络加速器的新型8位量化感知训练(S8BQAT)方案。我们的方法灵感来自Lloyd-Max压缩理论,其实际适应性适应训练期间可行的计算开销。通过量化质心源自32位基线,我们使用多区域绝对余弦(MRACOS)正规器增强训练损失,该培训将重量汇总到其最近的质心,有效地充当伪压缩机。此外,引入了定期调用的硬压缩机,以通过模拟运行时模型重量量化来提高收敛速率。我们将S8BQAT应用于语音识别任务,使用经常性神经网络TransDucer(RNN-T)体系结构。使用S8BQAT,我们能够将模型参数大小增加,以将单词错误率相对降低4-16%,同时仍将延迟提高5%。
translated by 谷歌翻译
近年来已经看到了最终(E2E)口语理解(SLU)系统的重要进展,它直接从口头音频预测意图和插槽。虽然对话历史被利用以改善基于传统的基于文本的自然语言理解系统,但是当前的E2E SLU方法尚未在多转义和面向任务的对话中尚未结合这种关键的上下文信号。在这项工作中,我们提出了一个上下文E2E SLU模型架构,它使用多针关注机制来通过编码的先前的话语和对话框(语音助手所采取的动作)进行多转对对话。我们详细介绍了将这些上下文集成到最先进的复制和转换器的模型中的替代方法。当应用于由语音助理收集的大型识别的话语数据集时,我们的方法分别将平均单词和语义误差率降低10.8%和12.6%。我们还在公开可用的数据集中呈现结果,并显示我们的方法显着提高了非联盟基线的性能
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
We demonstrate how efficient autonomous drone swarms can be in detecting and tracking occluded targets in densely forested areas, such as lost people during search and rescue missions. Exploration and optimization of local viewing conditions, such as occlusion density and target view obliqueness, provide much faster and much more reliable results than previous, blind sampling strategies that are based on pre-defined waypoints. An adapted real-time particle swarm optimization and a new objective function are presented that are able to deal with dynamic and highly random through-foliage conditions. Synthetic aperture sensing is our fundamental sampling principle, and drone swarms are employed to approximate the optical signals of extremely wide and adaptable airborne lenses.
translated by 谷歌翻译
Sequential testing, always-valid $p$-values, and confidence sequences promise flexible statistical inference and on-the-fly decision making. However, unlike fixed-$n$ inference based on asymptotic normality, existing sequential tests either make parametric assumptions and end up under-covering/over-rejecting when these fail or use non-parametric but conservative concentration inequalities and end up over-covering/under-rejecting. To circumvent these issues, we sidestep exact at-least-$\alpha$ coverage and focus on asymptotically exact coverage and asymptotic optimality. That is, we seek sequential tests whose probability of ever rejecting a true hypothesis asymptotically approaches $\alpha$ and whose expected time to reject a false hypothesis approaches a lower bound on all tests with asymptotic coverage at least $\alpha$, both under an appropriate asymptotic regime. We permit observations to be both non-parametric and dependent and focus on testing whether the observations form a martingale difference sequence. We propose the universal sequential probability ratio test (uSPRT), a slight modification to the normal-mixture sequential probability ratio test, where we add a burn-in period and adjust thresholds accordingly. We show that even in this very general setting, the uSPRT is asymptotically optimal under mild generic conditions. We apply the results to stabilized estimating equations to test means, treatment effects, etc. Our results also provide corresponding guarantees for the implied confidence sequences. Numerical simulations verify our guarantees and the benefits of the uSPRT over alternatives.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
Transformers have been essential to pretraining success in NLP. Other architectures have been used, but require attention layers to match benchmark accuracy. This work explores pretraining without attention. We test recently developed routing layers based on state-space models (SSM) and model architectures based on multiplicative gating. Used together these modeling choices have a large impact on pretraining accuracy. Empirically the proposed Bidirectional Gated SSM (BiGS) replicates BERT pretraining results without attention and can be extended to long-form pretraining of 4096 tokens without approximation.
translated by 谷歌翻译
In this paper, we present strong baselines for the task of Feedback Comment Generation for Writing Learning. Given a sentence and an error span, the task is to generate a feedback comment explaining the error. Sentences and feedback comments are both in English. We experiment with LLMs and also create multiple pseudo datasets for the task, investigating how it affects the performance of our system. We present our results for the task along with extensive analysis of the generated comments with the aim of aiding future studies in feedback comment generation for English language learners.
translated by 谷歌翻译
In order for automated mobile vehicles to navigate in the real world with minimal collision risks, it is necessary for their planning algorithms to consider uncertainties from measurements and environmental disturbances. In this paper, we consider analytical solutions for a conservative approximation of the mutual probability of collision between two robotic vehicles in the presence of such uncertainties. Therein, we present two methods, which we call unitary scaling and principal axes rotation, for decoupling the bivariate integral required for efficient approximation of the probability of collision between two vehicles including orientation effects. We compare the conservatism of these methods analytically and numerically. By closing a control loop through a model predictive guidance scheme, we observe through Monte-Carlo simulations that directly implementing collision avoidance constraints from the conservative approximations remains infeasible for real-time planning. We then propose and implement a convexification approach based on the tightened collision constraints that significantly improves the computational efficiency and robustness of the predictive guidance scheme.
translated by 谷歌翻译
Static subword tokenization algorithms have been an essential component of recent works on language modeling. However, their static nature results in important flaws that degrade the models' downstream performance and robustness. In this work, we propose MANTa, a Module for Adaptive Neural TokenizAtion. MANTa is a differentiable tokenizer trained end-to-end with the language model. The resulting system offers a trade-off between the expressiveness of byte-level models and the speed of models trained using subword tokenization. In addition, our tokenizer is highly explainable since it produces an explicit segmentation of sequences into blocks. We evaluate our pre-trained model on several English datasets from different domains as well as on synthetic noise. We find that MANTa improves robustness to character perturbations and out-of-domain data. We then show that MANTa performs comparably to other models on the general-domain GLUE benchmark. Finally, we show that it is considerably faster than strictly byte-level models.
translated by 谷歌翻译