普通射线照相被广泛用于检测总髋关节置换(THR)植入物的机械松动。目前,X光片是由医疗专业人员手动评估的,这可能是差的,并且观察者内部可靠性和准确性较低。此外,手动检测THR植入物的机械松动需要经验丰富的临床医生,这些临床医生可能总是很容易获得,可能导致诊断延迟。在这项研究中,我们提出了一种新型的,全自动和可解释的方法,用于使用深卷积神经网络(CNN)从纯X线照片中检测THR植入物的机械松动。我们使用五倍交叉验证对40名患者进行了40名患者的CNN培训,并将其性能与大量板认证的骨科医生(AFC)进行了比较。为了提高对机器结局的信心,我们还实施了显着图,以可视化CNN在哪里进行诊断。 CNN在诊断植入物的机械松动方面优于骨科医生,其敏感性明显高于敏感性(0.94),其特异性相同(0.96)(0.96)。显着图显示,CNN着眼于临床相关的特征以进行诊断。此类CNN可用于自动放射植入物的机械松动,以补充从业者的决策过程,提高其诊断准确性,并释放它们以进行以患者为中心的护理。
translated by 谷歌翻译
Investigation and analysis of patient outcomes, including in-hospital mortality and length of stay, are crucial for assisting clinicians in determining a patient's result at the outset of their hospitalization and for assisting hospitals in allocating their resources. This paper proposes an approach based on combining the well-known gray wolf algorithm with frequent items extracted by association rule mining algorithms. First, original features are combined with the discriminative extracted frequent items. The best subset of these features is then chosen, and the parameters of the used classification algorithms are also adjusted, using the gray wolf algorithm. This framework was evaluated using a real dataset made up of 2816 patients from the Imam Ali Kermanshah Hospital in Iran. The study's findings indicate that low Ejection Fraction, old age, high CPK values, and high Creatinine levels are the main contributors to patients' mortality. Several significant and interesting rules related to mortality in hospitals and length of stay have also been extracted and presented. Additionally, the accuracy, sensitivity, specificity, and auroc of the proposed framework for the diagnosis of mortality in the hospital using the SVM classifier were 0.9961, 0.9477, 0.9992, and 0.9734, respectively. According to the framework's findings, adding frequent items as features considerably improves classification accuracy.
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
Automatic medical image classification is a very important field where the use of AI has the potential to have a real social impact. However, there are still many challenges that act as obstacles to making practically effective solutions. One of those is the fact that most of the medical imaging datasets have a class imbalance problem. This leads to the fact that existing AI techniques, particularly neural network-based deep-learning methodologies, often perform poorly in such scenarios. Thus this makes this area an interesting and active research focus for researchers. In this study, we propose a novel loss function to train neural network models to mitigate this critical issue in this important field. Through rigorous experiments on three independently collected datasets of three different medical imaging domains, we empirically show that our proposed loss function consistently performs well with an improvement between 2%-10% macro f1 when compared to the baseline models. We hope that our work will precipitate new research toward a more generalized approach to medical image classification.
translated by 谷歌翻译
Based on WHO statistics, many individuals are suffering from visual problems, and their number is increasing yearly. One of the most critical needs they have is the ability to navigate safely, which is why researchers are trying to create and improve various navigation systems. This paper provides a navigation concept based on the visual slam and Yolo concepts using monocular cameras. Using the ORB-SLAM algorithm, our concept creates a map from a predefined route that a blind person most uses. Since visually impaired people are curious about their environment and, of course, to guide them properly, obstacle detection has been added to the system. As mentioned earlier, safe navigation is vital for visually impaired people, so our concept has a path-following part. This part consists of three steps: obstacle distance estimation, path deviation detection, and next-step prediction, done by monocular cameras.
translated by 谷歌翻译
Practical applications of mechanical metamaterials often involve solving inverse problems where the objective is to find the (multiple) microarchitectures that give rise to a given set of properties. The limited resolution of additive manufacturing techniques often requires solving such inverse problems for specific sizes. One should, therefore, find multiple microarchitectural designs that exhibit the desired properties for a specimen with given dimensions. Moreover, the candidate microarchitectures should be resistant to fatigue and fracture, meaning that peak stresses should be minimized as well. Such a multi-objective inverse design problem is formidably difficult to solve but its solution is the key to real-world applications of mechanical metamaterials. Here, we propose a modular approach titled 'Deep-DRAM' that combines four decoupled models, including two deep learning models (DLM), a deep generative model (DGM) based on conditional variational autoencoders (CVAE), and direct finite element (FE) simulations. Deep-DRAM (deep learning for the design of random-network metamaterials) integrates these models into a unified framework capable of finding many solutions to the multi-objective inverse design problem posed here. The integrated framework first introduces the desired elastic properties to the DGM, which returns a set of candidate designs. The candidate designs, together with the target specimen dimensions are then passed to the DLM which predicts their actual elastic properties considering the specimen size. After a filtering step based on the closeness of the actual properties to the desired ones, the last step uses direct FE simulations to identify the designs with the minimum peak stresses.
translated by 谷歌翻译
High utility pattern mining is an interesting yet challenging problem. The intrinsic computational cost of the problem will impose further challenges if efficiency in addition to the efficacy of a solution is sought. Recently, this problem was studied on interval-based event sequences with a constraint on the length and size of the patterns. However, the proposed solution lacks adequate efficiency. To address this issue, we propose a projected upper bound on the utility of the patterns discovered from sequences of interval-based events. To show its effectiveness, the upper bound is utilized by a pruning strategy employed by the HUIPMiner algorithm. Experimental results show that the new upper bound improves HUIPMiner performance in terms of both execution time and memory usage.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
The aim of this study is to define importance of predictors for black box machine learning methods, where the prediction function can be highly non-additive and cannot be represented by statistical parameters. In this paper we defined a ``Generalized Variable Importance Metric (GVIM)'' using the true conditional expectation function for a continuous or a binary response variable. We further showed that the defined GVIM can be represented as a function of the Conditional Average Treatment Effect (CATE) squared for multinomial and continuous predictors. Then we propose how the metric can be estimated using using any machine learning models. Finally we showed the properties of the estimator using multiple simulations.
translated by 谷歌翻译
Cardinality estimation is one of the most fundamental and challenging problems in query optimization. Neither classical nor learning-based methods yield satisfactory performance when estimating the cardinality of the join queries. They either rely on simplified assumptions leading to ineffective cardinality estimates or build large models to understand the data distributions, leading to long planning times and a lack of generalizability across queries. In this paper, we propose a new framework FactorJoin for estimating join queries. FactorJoin combines the idea behind the classical join-histogram method to efficiently handle joins with the learning-based methods to accurately capture attribute correlation. Specifically, FactorJoin scans every table in a DB and builds single-table conditional distributions during an offline preparation phase. When a join query comes, FactorJoin translates it into a factor graph model over the learned distributions to effectively and efficiently estimate its cardinality. Unlike existing learning-based methods, FactorJoin does not need to de-normalize joins upfront or require executed query workloads to train the model. Since it only relies on single-table statistics, FactorJoin has small space overhead and is extremely easy to train and maintain. In our evaluation, FactorJoin can produce more effective estimates than the previous state-of-the-art learning-based methods, with 40x less estimation latency, 100x smaller model size, and 100x faster training speed at comparable or better accuracy. In addition, FactorJoin can estimate 10,000 sub-plan queries within one second to optimize the query plan, which is very close to the traditional cardinality estimators in commercial DBMS.
translated by 谷歌翻译