本文涉及基于张量低秩分解框架的镜面反射去除,借助极化信息。我们的方法是通过观察到的,即图像的镜头亮点稀疏分布,而剩余的弥漫性反射可以通过使用低级别和稀疏分解框架的几种不同颜色的线性组合很好地近似。与当前的溶液不同,我们的张量低级别分解可以保持镜面和弥漫性信息的空间结构,从而使我们能够在强镜反射或饱和区域中恢复弥漫性图像。我们进一步定义并施加了新的极化正则项作为颜色通道的约束。这种正则化可以通过处理颜色失真来提高该方法的性能,以处理颜色失真,这是一个基于色度的方法的常见问题,尤其是在强烈的镜面反射的情况下。通过对合成图像和真实极化图像的全面实验,我们证明我们的方法能够显着提高突出显示镜面去除的准确性,并优于恢复弥漫性图像的竞争方法,尤其是在强烈的镜面反射区域或在饱和区域中。
translated by 谷歌翻译
CNN精确深度预测的能力是在实际视觉上的应用中广泛使用的主要挑战,例如增强的相机跟踪和密集映射。本文旨在回答以下问题:我们可以在视觉SLAM算法的帮助下调整深度预测CNN,即使CNN没有针对当前的操作环境训练,以便受益于SLAM性能?为此,我们提出了一种新的在线适应框架,由两个互补过程组成:一个SLAM算法用于生成微调深度预测的关键帧和使用在线适应深度来提高地图质量的另一算法。一旦拆除了潜在的噪声地图点,我们就会执行全局光度束调节(BA)以提高整体的SLAM性能。在我们自己的实验环境中的基准数据集和真正机器人的实验结果表明,我们的提出方法提高了大满重建精度。我们展示了在培训损失中使用正则化作为防止灾难性遗忘的有效手段。此外,我们将我们的在线适应框架与最先进的预先训练的深度预测CNN进行比较,以表明我们的在线适应深度预测CNN优于已经在大量数据集上培训的深度预测CNN。
translated by 谷歌翻译
The outburst of COVID-19 in late 2019 was the start of a health crisis that shook the world and took millions of lives in the ensuing years. Many governments and health officials failed to arrest the rapid circulation of infection in their communities. The long incubation period and the large proportion of asymptomatic cases made COVID-19 particularly elusive to track. However, wastewater monitoring soon became a promising data source in addition to conventional indicators such as confirmed daily cases, hospitalizations, and deaths. Despite the consensus on the effectiveness of wastewater viral load data, there is a lack of methodological approaches that leverage viral load to improve COVID-19 forecasting. This paper proposes using deep learning to automatically discover the relationship between daily confirmed cases and viral load data. We trained one Deep Temporal Convolutional Networks (DeepTCN) and one Temporal Fusion Transformer (TFT) model to build a global forecasting model. We supplement the daily confirmed cases with viral loads and other socio-economic factors as covariates to the models. Our results suggest that TFT outperforms DeepTCN and learns a better association between viral load and daily cases. We demonstrated that equipping the models with the viral load improves their forecasting performance significantly. Moreover, viral load is shown to be the second most predictive input, following the containment and health index. Our results reveal the feasibility of training a location-agnostic deep-learning model to capture the dynamics of infection diffusion when wastewater viral load data is provided.
translated by 谷歌翻译
这项研究旨在提出一个基于K-neart邻居的新型分类器,该分类器使用Power Muirhead平均操作员来计算每个类别的本地平均值。我们称我们的新方法电源muirhead Mean K-Nearest邻居(PMM-KNN)分类器。PMM-KNN分类器具有多个参数,可以针对每个问题确定和微调,这些参数与其他最近的邻居方法相比是一个优势。我们使用五个知名数据集评估PMM-KNN性能。研究结果表明,PMM-KNN优于其他一些分类方法。
translated by 谷歌翻译
参数效率的方法能够使用单个冷冻的预训练的大语言模型(LLM)来通过学习特定于任务的软提示来执行许多任务,从而在串联到输入文本时调节模型行为。但是,这些学习的提示与给定的冷冻模型紧密耦合 - 如果模型已更新,则需要获得相应的新提示。在这项工作中,我们提出并调查了几种“提示回收”的方法,其中将在源模型上进行了及时培训以与新目标模型一起使用。我们的方法不依赖于目标模型的有监督的提示,特定于任务的数据或培训更新,这与从头开始的目标模型重新调整提示一样昂贵。我们表明,模型之间的回收是可能的(我们的最佳设置能够成功回收$ 88.9 \%的提示,从而产生一个提示,即表现出色的基线),但是剩下的大量性能净空,需要改进的回收技术。
translated by 谷歌翻译
多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN),尤其是U-NET,一直是医学图像处理时代的流行技术。具体而言,开创性的U-NET及其替代方案成功地设法解决了各种各样的医学图像分割任务。但是,这些体系结构在本质上是不完美的,因为它们无法表现出长距离相互作用和空间依赖性,从而导致具有可变形状和结构的医学图像分割的严重性能下降。针对序列到序列预测的初步提议的变压器已成为替代体系结构,以精确地模拟由自我激进机制辅助的全局信息。尽管设计了可行的设计,但利用纯变压器来进行图像分割目的,可能导致限制的定位容量,导致低级功能不足。因此,一系列研究旨在设计基于变压器的U-NET的强大变体。在本文中,我们提出了Trans-Norm,这是一种新型的深层分割框架,它随同将变压器模块合并为标准U-NET的编码器和跳过连接。我们认为,跳过连接的方便设计对于准确的分割至关重要,因为它可以帮助扩展路径和收缩路径之间的功能融合。在这方面,我们从变压器模块中得出了一种空间归一化机制,以适应性地重新校准跳过连接路径。对医学图像分割的三个典型任务进行了广泛的实验,证明了透气的有效性。代码和训练有素的模型可在https://github.com/rezazad68/transnorm上公开获得。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
转移学习是一种标准技术,可以将知识从一个领域转移到另一个领域。对于医学成像中的应用,尽管域之间的任务和图像特征差异,但从Imagenet转移已成为事实上的方法。但是,尚不清楚哪些因素决定了哪些因素以及在何种程度上转移学习到医疗领域是有用的。最近,人们对源域重复使用的特征的长期假设最近受到质疑。通过在几个医学图像基准数据集上进行的一系列实验,我们探讨了传输学习,数据大小,模型的容量和电感偏置以及源域和目标域之间的距离之间的关系。我们的发现表明,在大多数情况下,转移学习是有益的,我们表征了重要的角色重复使用在其成功方面。
translated by 谷歌翻译