This paper proposes a hardware-efficient architecture, Linearized Convolution Network (LiCo-Net) for keyword spotting. It is optimized specifically for low-power processor units like microcontrollers. ML operators exhibit heterogeneous efficiency profiles on power-efficient hardware. Given the exact theoretical computation cost, int8 operators are more computation-effective than float operators, and linear layers are often more efficient than other layers. The proposed LiCo-Net is a dual-phase system that uses the efficient int8 linear operators at the inference phase and applies streaming convolutions at the training phase to maintain a high model capacity. The experimental results show that LiCo-Net outperforms single-value decomposition filter (SVDF) on hardware efficiency with on-par detection performance. Compared to SVDF, LiCo-Net reduces cycles by 40% on HiFi4 DSP.
translated by 谷歌翻译
The explosive growth of dynamic and heterogeneous data traffic brings great challenges for 5G and beyond mobile networks. To enhance the network capacity and reliability, we propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme that adaptively allocates the uplink and downlink time-frequency resources of base stations (BSs) to meet the asymmetric and heterogeneous traffic demands while alleviating the inter-cell interference. We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP) that maximizes the long-term expected sum rate under the users' packet dropping ratio constraints. In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named federated Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm. The BSs decide their local time-frequency configurations through RL algorithms and achieve global training via exchanging local RL models with their neighbors under a decentralized federated learning framework. Specifically, to deal with the large-scale discrete action space of each BS, we adopt a DDPG-based algorithm to generate actions in a continuous space, and then utilize Wolpertinger policy to reduce the mapping errors from continuous action space back to discrete action space. Simulation results demonstrate the superiority of our proposed algorithm to benchmark algorithms with respect to system sum rate.
translated by 谷歌翻译
以任务为导向的通信,主要是使用基于学习的联合源通道编码(JSCC),旨在通过将与任务相关的信息传输到接收方来设计通信有效的边缘推理系统。但是,只有在不引入任何冗余的情况下传输与任务相关的信息可能会导致由于渠道变化引起的学习鲁棒性问题,而JSCC将源数据直接映射到连续的通道输入符号中会对现有数字通信系统提出兼容性问题。在本文中,我们通过首先调查编码表示形式的信息性与接收到的信息失真的鲁棒性之间的固有权衡解决这两个问题,然后提出一种具有任务调制的导向的通信方案,名为Inveete Task-定向的JSCC(DT-JSCC),其中发射器将功能编码为离散表示形式,并使用数字调制方案将其传输到接收器。在DT-JSCC方案中,我们开发了一个可靠的编码框架,称为强大的信息瓶颈(rib),以改善对信道变化的稳健性,并使用变量近似来得出肋骨目标的可拖动变异上限,以克服克服相互信息的计算棘手性。实验结果表明,所提出的DT-JSCC比具有低通信延迟的基线方法更好的推理性能更好,并且由于施加的肋骨框架而表现出对通道变化的鲁棒性。
translated by 谷歌翻译
角度分辨光发射光谱(ARPES)技术的最新发展涉及空间分辨样品,同时保持动量空间的高分辨率特征。这种开发很容易扩大数据大小及其复杂性以进行数据分析,其中之一是标记类似的分散剪辑并在空间上绘制它们。在这项工作中,我们证明了代表性学习(自我监督学习)模型的最新发展与K均值聚类相结合可以帮助自动化数据分析的一部分并节省宝贵的时间,尽管表现较低。最后,我们在代表空间中介绍了几次学习(k-nearest邻居或KNN),在该空间中,我们有选择地选择一个(k = 1)每个已知标签的图像参考,随后将其余的数据标记为最接近的参考图片。最后一种方法证明了自我监督的学习的强度,特别是在ARPE中自动化图像分析,并且可以推广到任何涉及图像数据的科学数据分析中。
translated by 谷歌翻译
近年来,随着新颖的策略和应用,神经网络一直在迅速扩展。然而,尽管不可避免地会针对关键应用程序来解决这些挑战,例如神经网络技术诸如神经网络技术中仍未解决诸如神经网络技术的挑战。已经尝试通过用符号表示来表示和嵌入域知识来克服神经网络计算中的挑战。因此,出现了神经符号学习(Nesyl)概念,其中结合了符号表示的各个方面,并将常识带入神经网络(Nesyl)。在可解释性,推理和解释性至关重要的领域中,例如视频和图像字幕,提问和推理,健康信息学和基因组学,Nesyl表现出了有希望的结果。这篇综述介绍了一项有关最先进的Nesyl方法的全面调查,其原理,机器和深度学习算法的进步,诸如Opthalmology之类的应用以及最重要的是该新兴领域的未来观点。
translated by 谷歌翻译
作为一个新的编程范式,深度神经网络(DNN)在实践中越来越多地部署,但是缺乏鲁棒性阻碍了他们在安全至关重要的领域中的应用。尽管有用于正式保证的DNN验证DNN的技术,但它们的可伸缩性和准确性有限。在本文中,我们提出了一种新颖的抽象方法,用于可扩展和精确的DNN验证。具体而言,我们提出了一种新颖的抽象来通过过度透明度分解DNN的大小。如果未报告任何虚假反例,验证抽象DNN的结果始终是结论性的。为了消除抽象提出的虚假反例,我们提出了一种新颖的反例引导的改进,该精炼精炼了抽象的DNN,以排除给定的虚假反例,同时仍然过分欣赏原始示例。我们的方法是正交的,并且可以与许多现有的验证技术集成。为了进行演示,我们使用两个有前途和确切的工具Marabou和Planet作为基础验证引擎实施我们的方法,并对广泛使用的基准ACAS XU,MNIST和CIFAR-10进行评估。结果表明,我们的方法可以通过解决更多问题并分别减少86.3%和78.0%的验证时间来提高他们的绩效。与最相关的抽象方法相比,我们的方法是11.6-26.6倍。
translated by 谷歌翻译
开发了一种基于变换器的图像压缩(TIC)方法,其重用了具有配对主和超编码器解码器的规范变形AutoEncoder(VAE)架构。主要和超编码器包括一系列神经转换单元(NTU),以分析和聚合重要信息以进行更紧凑的输入图像表示,而解码器镜像编码器侧操作以生成从压缩的像素域图像重建。比特流。每个NTU由Swin变压器块(STB)和卷积层(CONV)组成,以最佳地嵌入远程和短程信息;同时,设计了一种休闲的注意模块(CAM),用于潜在特征的自适应上下文建模,以利用超自行性前提。具有最先进的方法的TIC竞争对手,包括基于深度卷积神经网络(CNNS)的学习图像编码(LIC)方法以及最近批准的多功能视频编码(VVC)标准的基于规则的基于规则的简介,并且需要很多较少的模型参数,例如,降低前导性能LIC减少45%。
translated by 谷歌翻译
本文提出了一种用于同时定位和映射(SLAM)系统的基于分层基于分段的优化方法。首先,我们提出了一种可靠的轨迹分割方法,可用于提高后端优化的效率。然后我们首次提出缓冲机制来提高分割的稳健性。在优化期间,我们使用全局信息来优化具有大错误的帧,而插值而不是优化,以更新估计估计的帧以根据每个帧的错误进行分级地分配计算量。基准测试的比较实验表明,我们的方法大大提高了优化效率,几乎没有准确性,并且通过大边距优于现有的高效优化方法。
translated by 谷歌翻译
由于深度学习模型通常包含数百万可培训的权重,因此对更有效的网络结构具有越来越高的存储空间和提高的运行时效率。修剪是最受欢迎的网络压缩技术之一。在本文中,我们提出了一种新颖的非结构化修剪管线,基于关注的同时稀疏结构和体重学习(ASWL)。与传统的频道和体重注意机制不同,ASWL提出了一种有效的算法来计算每层的层次引起的修剪比率,并且跟踪密度网络和稀疏网络的两种权重,以便修剪结构是同时从随机初始化的权重学习。我们在Mnist,CiFar10和Imagenet上的实验表明,与最先进的网络修剪方法相比,ASWL在准确性,修剪比率和操作效率方面取得了卓越的修剪。
translated by 谷歌翻译
本文回顾了关于压缩视频质量增强质量的第一个NTIRE挑战,重点是拟议的方法和结果。在此挑战中,采用了新的大型不同视频(LDV)数据集。挑战有三个曲目。Track 1和2的目标是增强HEVC在固定QP上压缩的视频,而Track 3旨在增强X265压缩的视频,以固定的位速率压缩。此外,轨道1和3的质量提高了提高保真度(PSNR)的目标,以及提高感知质量的2个目标。这三个曲目完全吸引了482个注册。在测试阶段,分别提交了12个团队,8支球队和11支球队,分别提交了轨道1、2和3的最终结果。拟议的方法和解决方案衡量视频质量增强的最先进。挑战的首页:https://github.com/renyang-home/ntire21_venh
translated by 谷歌翻译