开发了一种基于变换器的图像压缩(TIC)方法,其重用了具有配对主和超编码器解码器的规范变形AutoEncoder(VAE)架构。主要和超编码器包括一系列神经转换单元(NTU),以分析和聚合重要信息以进行更紧凑的输入图像表示,而解码器镜像编码器侧操作以生成从压缩的像素域图像重建。比特流。每个NTU由Swin变压器块(STB)和卷积层(CONV)组成,以最佳地嵌入远程和短程信息;同时,设计了一种休闲的注意模块(CAM),用于潜在特征的自适应上下文建模,以利用超自行性前提。具有最先进的方法的TIC竞争对手,包括基于深度卷积神经网络(CNNS)的学习图像编码(LIC)方法以及最近批准的多功能视频编码(VVC)标准的基于规则的基于规则的简介,并且需要很多较少的模型参数,例如,降低前导性能LIC减少45%。
translated by 谷歌翻译
最近,学到的图像压缩方法优于传统手工制作的方法,包括BPG。该成功的关键之一是学习的熵模型,该模型估计了量化潜在表示的概率分布。与其他视觉任务一样,最近学习的熵模型基于卷积神经网络(CNN)。但是,CNN由于局部连接性的性质而在建模长期依赖性方面有限制,这在图像压缩中可能是一个重要的瓶颈,其中降低空间冗余是一个关键点。为了克服这个问题,我们提出了一个名为Informand Transformer(Informer)的新型熵模型,该模型使用注意机制以内容依赖性方式利用全球和局部信息。我们的实验表明,告密者可以提高利率 - 对柯达和Tecnick数据集的最先进方法的延伸性能,而没有二次计算复杂性问题。我们的源代码可在https://github.com/naver-ai/informer上获得。
translated by 谷歌翻译
熵建模是高性能图像压缩算法的关键组件。自回旋上下文建模的最新发展有助于基于学习的方法超越了经典的方法。但是,由于潜在空间中的空间通道依赖性以及上下文适应性的次优实现,这些模型的性能可以进一步提高。受到变压器的自适应特性的启发,我们提出了一个基于变压器的上下文模型,名为ContextFormer,该模型将事实上的标准注意机制推广到时空通道的注意力。我们用上下文形式替换了现代压缩框架的上下文模型,并在广泛使用的柯达,Clic2020和Tecnick Image数据集上进行测试。我们的实验结果表明,与标准多功能视频编码(VVC)测试模型(VTM)16.2相比,提出的模型可节省多达11%的利率,并且在PSNR和MS-SSIM方面优于各种基于学习的模型。
translated by 谷歌翻译
基于神经网络的图像压缩已经过度研究。模型稳健性很大程度上被忽视,但它对服务能够实现至关重要。我们通过向原始源图像注入少量噪声扰动来执行对抗攻击,然后使用主要学习的图像压缩模型来编码这些对抗示例。实验报告对逆势实例的重建中的严重扭曲,揭示了现有方法的一般漏洞,无论用于底层压缩模型(例如,网络架构,丢失功能,质量标准)和用于注射扰动的优化策略(例如,噪声阈值,信号距离测量)。后来,我们应用迭代对抗的FineTuning来细化掠夺模型。在每次迭代中,将随机源图像和对抗示例混合以更新底层模型。结果通过大大提高压缩模型稳健性来表明提出的FineTuning策略的有效性。总体而言,我们的方法是简单,有效和更广泛的,使其具有开发稳健的学习图像压缩解决方案的吸引力。所有材料都在HTTPS://njuvision.github.io/trobustn中公开访问,以便可重复研究。
translated by 谷歌翻译
上下文自适应熵模型的应用显着提高了速率 - 渗透率(R-D)的性能,在该表现中,超级培训和自回归模型被共同利用来有效捕获潜在表示的空间冗余。但是,潜在表示仍然包含一些空间相关性。此外,这些基于上下文自适应熵模型的方法在解码过程中无法通过并行计算设备,例如FPGA或GPU。为了减轻这些局限性,我们提出了一个学识渊博的多分辨率图像压缩框架,该框架利用了最近开发的八度卷积,以将潜在表示形式分配到高分辨率(HR)和低分辨率(LR)部分,类似于小波变换,这进一步改善了R-D性能。为了加快解码的速度,我们的方案不使用上下文自适应熵模型。取而代之的是,我们利用一个额外的超层,包括超级编码器和超级解码器,以进一步删除潜在表示的空间冗余。此外,将跨分辨率参数估计(CRPE)引入提出的框架中,以增强信息流并进一步改善速率延伸性能。提出了对总损耗函数提出的其他信息损失,以调整LR部分对最终位流的贡献。实验结果表明,与最先进的学术图像压缩方法相比,我们的方法分别将解码时间减少了约73.35%和93.44%,R-D性能仍然优于H.266/VVC(4:4::4:: 2:0)以及对PSNR和MS-SSIM指标的一些基于学习的方法。
translated by 谷歌翻译
我们提出了一种与变压器的端到端图像压缩和分析模型,针对基于云的图像分类应用程序。代替将现有的变换器的图像分类模型直接放置在图像编解码器之后,我们的目的是重新设计视觉变换器(VIV)模型,以从压缩特征执行图像分类,并促进来自变压器的长期信息的图像压缩。具体而言,我们首先用由卷积神经网络建模的轻量级图像编码器更换vit模型的涂抹杆(即图像分裂和嵌入)。由图像编码器产生的压缩特征被注入卷积电感偏压,并被馈送到变压器,用于绕过图像重建。同时,我们提出了一种特征聚合模块,使压缩特征熔断具有变压器的所选中间特征,并将聚合特征馈送到用于图像重建的解卷积神经网络。聚合特征可以从变压器的自我关注机构获得长期信息,并提高压缩性能。速率 - 失真准确度优化问题最终通过两步培训策略解决。实验结果证明了所提出的模型在图像压缩和分类任务中的有效性。
translated by 谷歌翻译
本研究通过基于稀疏的张量处理(STP)的Voxelized PCG的多尺度表示,通过稀疏的张解器处理(STP)进行了一种统一点云几何形状(PCG)压缩方法。应用STP显着降低了复杂性,因为它只执行以最可能的积极占用体素(MP-POV)为中心的卷曲。并且多尺度代表有助于我们逐步压缩规模明智的MP-POV。总压缩效率高度取决于每个MP-POV的占用概率的近似精度。因此,我们设计基于稀疏的卷积的神经网络(Sparsecnn),包括稀疏卷曲和体素重新采样以广泛利用前沿。然后,我们开发基于SPARSECNN的占用概率近似(SOPA)模型,以估计在单阶段的方式中仅在逐步使用自回归邻居之前或以多阶段使用的横级或以多级的方式估计占用概率。此外,我们还建议基于SPARSECNN的本地邻居嵌入(SLNE),以表征当地空间变化作为改进SOPA的特征属性。我们的统一方法显示了在与MPEG G-PCC相比的各种数据集中,包括致密PCG(8iVFB,OWLII)和稀疏LIDAR PCG(KITTI,FORD)的各种数据集中的无损压缩模式中的最先进的性能和其他基于学习的压缩方案。此外,所提出的方法由于跨越所有尺度的模型共享而引起的轻量级复杂性,并且由于模型共享。我们使所有材料可在HTTPS://github.com/njuvision/sparsepcgc上公开访问可重复的研究。
translated by 谷歌翻译
对于许多技术领域的专业用户,例如医学,遥感,精密工程和科学研究,无损和近乎无情的图像压缩至关重要。但是,尽管在基于学习的图像压缩方面的研究兴趣迅速增长,但没有发表的方法提供无损和近乎无情的模式。在本文中,我们提出了一个统一而强大的深层损失加上残留(DLPR)编码框架,以实现无损和近乎无情的图像压缩。在无损模式下,DLPR编码系统首先执行有损压缩,然后执行残差的无损编码。我们在VAE的方法中解决了关节损失和残留压缩问题,并添加残差的自回归上下文模型以增强无损压缩性能。在近乎荒谬的模式下,我们量化了原始残差以满足给定的$ \ ell_ \ infty $错误绑定,并提出了可扩展的近乎无情的压缩方案,该方案适用于可变$ \ ell_ \ infty $ bunds而不是训练多个网络。为了加快DLPR编码,我们通过新颖的编码环境设计提高了算法并行化的程度,并以自适应残留间隔加速熵编码。实验结果表明,DLPR编码系统以竞争性的编码速度实现了最先进的无损和近乎无效的图像压缩性能。
translated by 谷歌翻译
多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
Recent neural compression methods have been based on the popular hyperprior framework. It relies on Scalar Quantization and offers a very strong compression performance. This contrasts from recent advances in image generation and representation learning, where Vector Quantization is more commonly employed. In this work, we attempt to bring these lines of research closer by revisiting vector quantization for image compression. We build upon the VQ-VAE framework and introduce several modifications. First, we replace the vanilla vector quantizer by a product quantizer. This intermediate solution between vector and scalar quantization allows for a much wider set of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise require intractably large codebooks. Second, inspired by the success of Masked Image Modeling (MIM) in the context of self-supervised learning and generative image models, we propose a novel conditional entropy model which improves entropy coding by modelling the co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly effective: its compression performance on par with recent hyperprior methods. It also outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses (e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks, we show qualitatively that it can operate under a hybrid mode between compression and generation, with no further training or finetuning. As a result, we explore the extreme compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.
translated by 谷歌翻译
Image compression is a fundamental research field and many well-known compression standards have been developed for many decades. Recently, learned compression methods exhibit a fast development trend with promising results. However, there is still a performance gap between learned compression algorithms and reigning compression standards, especially in terms of widely used PSNR metric. In this paper, we explore the remaining redundancy of recent learned compression algorithms. We have found accurate entropy models for rate estimation largely affect the optimization of network parameters and thus affect the rate-distortion performance. Therefore, in this paper, we propose to use discretized Gaussian Mixture Likelihoods to parameterize the distributions of latent codes, which can achieve a more accurate and flexible entropy model. Besides, we take advantage of recent attention modules and incorporate them into network architecture to enhance the performance. Experimental results demonstrate our proposed method achieves a state-of-the-art performance compared to existing learned compression methods on both Kodak and high-resolution datasets. To our knowledge our approach is the first work to achieve comparable performance with latest compression standard Versatile Video Coding (VVC) regarding PSNR. More importantly, our approach generates more visually pleasant results when optimized by MS-SSIM. The project page is at https://github.com/ZhengxueCheng/ Learned-Image-Compression-with-GMM-and-Attention.
translated by 谷歌翻译
最近,基于深度学习的图像压缩已取得了显着的进步,并且在主观度量和更具挑战性的客观指标中,与最新的传统方法H.266/vvc相比,取得了更好的评分(R-D)性能。但是,一个主要问题是,许多领先的学识渊博的方案无法保持绩效和复杂性之间的良好权衡。在本文中,我们提出了一个效率和有效的图像编码框架,该框架的复杂性比最高的状态具有相似的R-D性能。首先,我们开发了改进的多尺度残差块(MSRB),该块可以扩展容纳长石,并且更容易获得全球信息。它可以进一步捕获和减少潜在表示的空间相关性。其次,引入了更高级的重要性图网络,以自适应地分配位置到图像的不同区域。第三,我们应用2D定量后flter(PQF)来减少视频编码中样本自适应偏移量(SAO)flter的动机。此外,我们认为编码器和解码器的复杂性对图像压缩性能有不同的影响。基于这一观察结果,我们设计了一个不对称范式,其中编码器采用三个阶段的MSRB来提高学习能力,而解码器只需要一个srb的一个阶段就可以产生令人满意的重建,从而在不牺牲性能的情况下降低了解码的复杂性。实验结果表明,与最先进的方法相比,所提出方法的编码和解码时间速度约为17倍,而R-D性能仅在Kodak和Tecnick数据集中降低了1%,而R-D性能仅少于1%。它仍然比H.266/VVC(4:4:4)和其他基于学习的方法更好。我们的源代码可在https://github.com/fengyurenpingsheng上公开获得。
translated by 谷歌翻译
Recent models for learned image compression are based on autoencoders, learning approximately invertible mappings from pixels to a quantized latent representation. These are combined with an entropy model, a prior on the latent representation that can be used with standard arithmetic coding algorithms to yield a compressed bitstream. Recently, hierarchical entropy models have been introduced as a way to exploit more structure in the latents than simple fully factorized priors, improving compression performance while maintaining end-to-end optimization. Inspired by the success of autoregressive priors in probabilistic generative models, we examine autoregressive, hierarchical, as well as combined priors as alternatives, weighing their costs and benefits in the context of image compression. While it is well known that autoregressive models come with a significant computational penalty, we find that in terms of compression performance, autoregressive and hierarchical priors are complementary and, together, exploit the probabilistic structure in the latents better than all previous learned models. The combined model yields state-of-the-art rate-distortion performance, providing a 15.8% average reduction in file size over the previous state-of-the-art method based on deep learning, which corresponds to a 59.8% size reduction over JPEG, more than 35% reduction compared to WebP and JPEG2000, and bitstreams 8.4% smaller than BPG, the current state-of-the-art image codec. To the best of our knowledge, our model is the first learning-based method to outperform BPG on both PSNR and MS-SSIM distortion metrics.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译
可扩展的编码,可以适应通道带宽变化,在当今复杂的网络环境中表现良好。然而,现有的可扩展压缩方法面临两个挑战:降低压缩性能和可扩展性不足。在本文中,我们提出了第一所学习的细粒度可扩展图像压缩模型(DeepFGS)来克服上述两个缺点。具体地,我们介绍一个特征分离骨干,将图像信息划分为基本和可伸缩的功能,然后通过信息重新排列策略通过通道重新分配特征通道。以这种方式,我们可以通过一次通过编码来生成连续可扩展的比特流。此外,我们重复使用解码器以降低DeepFGS的参数和计算复杂性。实验表明,我们的DeePFGS优于PSNR和MS-SSIM度量中的所有基于学习的可伸缩图像压缩模型和传统可伸缩图像编解码器。据我们所知,我们的DeePFGS是对学习的细粒度可扩展编码的首次探索,与基于学习的方法相比,实现了最优质的可扩展性。
translated by 谷歌翻译
表面缺陷检测是确保工业产品质量的极其至关重要的步骤。如今,基于编码器架构的卷积神经网络(CNN)在各种缺陷检测任务中取得了巨大的成功。然而,由于卷积的内在局部性,它们通常在明确建模长距离相互作用时表现出限制,这对于复杂情况下的像素缺陷检测至关重要,例如杂乱的背景和难以辨认的伪缺陷。最近的变压器尤其擅长学习全球图像依赖性,但对于详细的缺陷位置所需的本地结构信息有限。为了克服上述局限性,我们提出了一个有效的混合变压器体系结构,称为缺陷变压器(faft),用于表面缺陷检测,该检测将CNN和Transferaler纳入统一模型,以协作捕获本地和非本地关系。具体而言,在编码器模块中,首先采用卷积茎块来保留更详细的空间信息。然后,贴片聚合块用于生成具有四个层次结构的多尺度表示形式,每个层次结构之后分别是一系列的feft块,该块分别包括用于本地位置编码的本地位置块,一个轻巧的多功能自我自我 - 注意与良好的计算效率建模多尺度的全球上下文关系,以及用于功能转换和进一步位置信息学习的卷积馈送网络。最后,提出了一个简单但有效的解码器模块,以从编码器中的跳过连接中逐渐恢复空间细节。与其他基于CNN的网络相比,三个数据集上的广泛实验证明了我们方法的优势和效率。
translated by 谷歌翻译
在近期深度图像压缩神经网络中,熵模型在估计深度图像编码的先前分配时起着重要作用。现有方法将HydupRior与熵估计功能中的本地上下文组合。由于没有全球愿景,这大大限制了他们的表现。在这项工作中,我们提出了一种新的全局参考模型,用于图像压缩,以有效地利用本地和全局上下文信息,导致增强的压缩率。所提出的方法扫描解码的潜伏,然后找到最相关的潜伏,以帮助分布估计当前潜伏。这项工作的副产品是一种平均转换GDN模块的创新,进一步提高了性能。实验结果表明,所提出的模型优于行业中大多数最先进方法的速率变形性能。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
为基于几何的点云压缩(G-PCC)标准开发了基于学习的自适应环滤波器,以减少属性压缩工件。提出的方法首先生成多个最可行的样品偏移(MPSO)作为潜在的压缩失真近似值,然后线性权重以减轻伪影。因此,我们将过滤后的重建驱动尽可能靠近未压缩的PCA。为此,我们设计了一个由两个连续的处理阶段组成的压缩工件还原网络(CARNET):MPSOS推导和MPSOS组合。 MPSOS派生使用两个流网络来模拟来自直接空间嵌入和频率依赖性嵌入的局部邻域变化,在该嵌入中,稀疏的卷积被利用可从细微和不规则分布的点中最佳汇总信息。 MPSOS组合由最小平方误量学指导,以进一步捕获输入PCAS的内容动力学,从而得出加权系数。 Carnet作为GPCC的环内过滤工具实现,其中这些线性加权系数被封装在比特斯流中,并以忽略不计的比特率开销。实验结果表明,对最新的GPCC的主观和客观性都显着改善。
translated by 谷歌翻译