由于长期机器人操作中的地图尺寸的增长,现有的同时定位和映射方法的可伸缩性受到限制。此外,处理此类地图进行本地化和计划任务会导致船上所需的计算资源增加。为了解决长期操作中记忆消耗的问题,我们开发了一种新型的实时SLAM算法,即Meslam,该算法基于神经场隐含的地图表示。它结合了提出的全球映射策略,包括神经网络分布和区域跟踪,以及外部进程系统。结果,该算法能够有效地训练多个代表不同地图区域的网络,并在大规模环境中准确地训练姿势。实验结果表明,所提出的方法的准确性与最新方法(平均为6.6 cm的TUM RGB-D序列)相当,并且优于基线,IMAP $^*$。此外,拟议的SLAM方法提供了最紧凑的地图,而没有细节变形(1.9 MB(1.9 MB)在最先进的大满贯方法中储存57 m $^3 $)。
translated by 谷歌翻译
在拟议的研究中,我们描述了一种方法,可通过在摄像机和猛击管道之间实现中间层来提高具有多个相机的移动机器人的视觉猛击算法和有限的计算能力的方法。在此层中,图像是使用基于RESNET18的神经网络对机器人定位的适用性进行分类的。该网络接受了在Skolkovo科学技术学院(Skoltech)校园收集的六摄像机数据集培训。对于训练,我们使用与随后的同一相机(“良好”关键点或功能)成功匹配的图像和球形功能。结果表明,网络能够准确地确定Orb-Slam2的最佳图像,并在SLAM管道中实施拟议的方法可以显着增加SLAM算法可以定位的图像数量,并提高其整体鲁棒性,并提高其整体鲁棒性。视觉大满贯。与使用Orb提取器和在CPU操作时使用Orb提取器和功能匹配器相比,操作时间的实验表明,在GPU上运行时,提出的方法的速度至少要快6倍。该网络评估在识别具有大量“良好” ORB关键的图像时至少显示了90%的精度。提出的方法的使用允许通过从具有贫困流的相机切换来保持整个数据集的大量功能。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
Neural networks have achieved impressive results on many technological and scientific tasks. Yet, their empirical successes have outpaced our fundamental understanding of their structure and function. By identifying mechanisms driving the successes of neural networks, we can provide principled approaches for improving neural network performance and develop simple and effective alternatives. In this work, we isolate the key mechanism driving feature learning in fully connected neural networks by connecting neural feature learning to the average gradient outer product. We subsequently leverage this mechanism to design \textit{Recursive Feature Machines} (RFMs), which are kernel machines that learn features. We show that RFMs (1) accurately capture features learned by deep fully connected neural networks, (2) close the gap between kernel machines and fully connected networks, and (3) surpass a broad spectrum of models including neural networks on tabular data. Furthermore, we demonstrate that RFMs shed light on recently observed deep learning phenomena such as grokking, lottery tickets, simplicity biases, and spurious features. We provide a Python implementation to make our method broadly accessible [\href{https://github.com/aradha/recursive_feature_machines}{GitHub}].
translated by 谷歌翻译
Deep neural networks (DNNs) are often used for text classification tasks as they usually achieve high levels of accuracy. However, DNNs can be computationally intensive with billions of parameters and large amounts of labeled data, which can make them expensive to use, to optimize and to transfer to out-of-distribution (OOD) cases in practice. In this paper, we propose a non-parametric alternative to DNNs that's easy, light-weight and universal in text classification: a combination of a simple compressor like gzip with a $k$-nearest-neighbor classifier. Without any training, pre-training or fine-tuning, our method achieves results that are competitive with non-pretrained deep learning methods on six in-distributed datasets. It even outperforms BERT on all five OOD datasets, including four low-resource languages. Our method also performs particularly well in few-shot settings where labeled data are too scarce for DNNs to achieve a satisfying accuracy.
translated by 谷歌翻译
Hyperparameter tuning is critical to the success of federated learning applications. Unfortunately, appropriately selecting hyperparameters is challenging in federated networks. Issues of scale, privacy, and heterogeneity introduce noise in the tuning process and make it difficult to evaluate the performance of various hyperparameters. In this work, we perform the first systematic study on the effect of noisy evaluation in federated hyperparameter tuning. We first identify and rigorously explore key sources of noise, including client subsampling, data and systems heterogeneity, and data privacy. Surprisingly, our results indicate that even small amounts of noise can significantly impact tuning methods-reducing the performance of state-of-the-art approaches to that of naive baselines. To address noisy evaluation in such scenarios, we propose a simple and effective approach that leverages public proxy data to boost the evaluation signal. Our work establishes general challenges, baselines, and best practices for future work in federated hyperparameter tuning.
translated by 谷歌翻译
Often clickbait articles have a title that is phrased as a question or vague teaser that entices the user to click on the link and read the article to find the explanation. We developed a system that will automatically find the answer or explanation of the clickbait hook from the website text so that the user does not need to read through the text themselves. We fine-tune an extractive question and answering model (RoBERTa) and an abstractive one (T5), using data scraped from the 'StopClickbait' Facebook pages and Reddit's 'SavedYouAClick' subforum. We find that both extractive and abstractive models improve significantly after finetuning. We find that the extractive model performs slightly better according to ROUGE scores, while the abstractive one has a slight edge in terms of BERTscores.
translated by 谷歌翻译
Deep Learning (DL) models tend to perform poorly when the data comes from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection helps to identify such data samples, increasing the model's reliability. Recent works have developed DL-based OOD detection that achieves promising results on 2D medical images. However, scaling most of these approaches on 3D images is computationally intractable. Furthermore, the current 3D solutions struggle to achieve acceptable results in detecting even synthetic OOD samples. Such limited performance might indicate that DL often inefficiently embeds large volumetric images. We argue that using the intensity histogram of the original CT or MRI scan as embedding is descriptive enough to run OOD detection. Therefore, we propose a histogram-based method that requires no DL and achieves almost perfect results in this domain. Our proposal is supported two-fold. We evaluate the performance on the publicly available datasets, where our method scores 1.0 AUROC in most setups. And we score second in the Medical Out-of-Distribution challenge without fine-tuning and exploiting task-specific knowledge. Carefully discussing the limitations, we conclude that our method solves the sample-level OOD detection on 3D medical images in the current setting.
translated by 谷歌翻译
Efficient characterization of highly entangled multi-particle systems is an outstanding challenge in quantum science. Recent developments have shown that a modest number of randomized measurements suffices to learn many properties of a quantum many-body system. However, implementing such measurements requires complete control over individual particles, which is unavailable in many experimental platforms. In this work, we present rigorous and efficient algorithms for learning quantum many-body states in systems with any degree of control over individual particles, including when every particle is subject to the same global field and no additional ancilla particles are available. We numerically demonstrate the effectiveness of our algorithms for estimating energy densities in a U(1) lattice gauge theory and classifying topological order using very limited measurement capabilities.
translated by 谷歌翻译
In 2016-2017, TUS, the world's first experiment for testing the possibility of registering ultra-high energy cosmic rays (UHECRs) by their fluorescent radiation in the night atmosphere of Earth was carried out. Since 2019, the Russian-Italian fluorescence telescope (FT) Mini-EUSO ("UV Atmosphere") has been operating on the ISS. The stratospheric experiment EUSO-SPB2, which will employ an FT for registering UHECRs, is planned for 2023. We show how a simple convolutional neural network can be effectively used to find track-like events in the variety of data obtained with such instruments.
translated by 谷歌翻译