我们概述了新兴机会和挑战,以提高AI对科学发现的效用。AI为行业的独特目标与AI科学的目标创造了识别模式中的识别模式与来自数据的发现模式之间的紧张。如果我们解决了与域驱动的科学模型和数据驱动的AI学习机之间的“弥补差距”相关的根本挑战,那么我们预计这些AI模型可以改变假说发电,科学发现和科学过程本身。
translated by 谷歌翻译
情绪感知智能系统对于广泛的应用是必不可少的。这些系统由语言模型驱动,这主要落入两个范式:基于词汇和上下文。虽然最近的上下文模型越来越占主导地位,但由于它们的可解释性和易用性,我们仍然可以看到基于词汇的模型的需求。例如,基于词汇的模型允许研究人员容易地确定哪些单词和短语对测量情绪的变化有贡献。任何基于词汇的方法的挑战是,词典需要通过新的单词和表达进行常规扩展。在这里,我们提出了两个用于自动词典扩展的模型。我们的第一个模型建立了一种基线,采用简单而浅的神经网络,使用非上下文方法初始化了预先训练的单词嵌入。我们的第二种模式改进了我们的基线,具有深度变压器的网络,它带来了估计其词汇极性的单词定义。我们的评估表明,两种模型都能够以与亚马逊机械土耳其人的评论者相似的准确度,但是在成本的一小部分中,可以获得类似的准确性。
translated by 谷歌翻译
For conceptual design, engineers rely on conventional iterative (often manual) techniques. Emerging parametric models facilitate design space exploration based on quantifiable performance metrics, yet remain time-consuming and computationally expensive. Pure optimisation methods, however, ignore qualitative aspects (e.g. aesthetics or construction methods). This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE), which serves as forward performance predictor for given design features as well as an inverse design feature predictor conditioned on a set of performance requests. The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland. Sensitivity analysis is employed for explainability and informing designers about (i) relations of the model between features and/or performances and (ii) structural improvements under user-defined objectives. A case study proved our framework's potential to serve as a future co-pilot for conceptual design studies of pedestrian bridges and beyond.
translated by 谷歌翻译
Despite the huge advancement in knowledge discovery and data mining techniques, the X-ray diffraction (XRD) analysis process has mostly remained untouched and still involves manual investigation, comparison, and verification. Due to the large volume of XRD samples from high-throughput XRD experiments, it has become impossible for domain scientists to process them manually. Recently, they have started leveraging standard clustering techniques, to reduce the XRD pattern representations requiring manual efforts for labeling and verification. Nevertheless, these standard clustering techniques do not handle problem-specific aspects such as peak shifting, adjacent peaks, background noise, and mixed phases; hence, resulting in incorrect composition-phase diagrams that complicate further steps. Here, we leverage data mining techniques along with domain expertise to handle these issues. In this paper, we introduce an incremental phase mapping approach based on binary peak representations using a new threshold based fuzzy dissimilarity measure. The proposed approach first applies an incremental phase computation algorithm on discrete binary peak representation of XRD samples, followed by hierarchical clustering or manual merging of similar pure phases to obtain the final composition-phase diagram. We evaluate our method on the composition space of two ternary alloy systems- Co-Ni-Ta and Co-Ti-Ta. Our results are verified by domain scientists and closely resembles the manually computed ground-truth composition-phase diagrams. The proposed approach takes us closer towards achieving the goal of complete end-to-end automated XRD analysis.
translated by 谷歌翻译
在过去的二十年中,对机器人羊群的研究受到了极大的关注。在本文中,我们提出了一种约束驱动的控制算法,该算法可最大程度地减少单个试剂的能耗并产生新兴的V形成。随着代理之间的分散相互作用的形成出现,我们的方法对自发添加或将代理去除为系统是强大的。首先,我们提出了一个分析模型,用于在固定翼无人机后面的尾巴上洗涤,并得出了尾随无人机以最大化其旅行耐力的最佳空气速度。接下来,我们证明,简单地在最佳空速上飞行将永远不会导致新兴的羊群行为,并且我们提出了一种新的分散的“ Anseroid”行为,从而产生出现的V形成。我们用约束驱动的控制算法编码这些行为,该算法最小化每个无人机的机车能力。最后,我们证明,在我们提出的控制法律下,以近似V或eChelon形成初始化的无人机将融合,我们证明了这种出现在模拟和与Crazyflie四肢旋转机队的实验中实时发生。
translated by 谷歌翻译
眼科图像和衍生物,例如视网膜神经纤维层(RNFL)厚度图对于检测和监测眼科疾病至关重要(例如,青光眼)。对于计算机辅助诊断眼疾病,关键技术是自动从眼科图像中提取有意义的特征,这些特征可以揭示与功能视觉丧失相关的生物标志物(例如RNFL变薄模式)。然而,将结构性视网膜损伤与人类视力丧失联系起来的眼科图像的表示,主要是由于患者之间的解剖学变化很大。在存在图像伪像的情况下,这项任务变得更加具有挑战性,由于图像采集和自动细分,这很常见。在本文中,我们提出了一个耐伪造的无监督的学习框架,该框架称为眼科图像的学习表示。 Eyelearn具有一个伪影校正模块,可以学习可以最好地预测无伪影眼镜图像的表示形式。此外,Eyelearn采用聚类引导的对比度学习策略,以明确捕获内部和间形的亲和力。在训练过程中,图像在簇中动态组织,以形成对比样品,其中鼓励在相同或不同的簇中分别学习相似或不同的表示形式。为了评估包冰者,我们使用青光眼患者的现实世界眼科摄影图数据集使用学习的表示形式进行视野预测和青光眼检测。广泛的实验和与最先进方法的比较验证了眼球从眼科图像中学习最佳特征表示的有效性。
translated by 谷歌翻译
当代人工神经网络(ANN)是经过训练的端到端,共同学习功能和分类器以完成感兴趣的任务。尽管非常有效,但这种范式在组装带注释的特定任务数据集和培训大规模网络方面施加了巨大的成本。我们建议通过引入视觉生物标志物分类的辅助预任务来将特征从下游肺超声任务中学习。我们证明,通过培训模型来预测生物标记标签,可以从超声视频中学习一个内容丰富,简洁和可解释的功能空间。值得注意的是,可以从弱视频尺度监督注释的数据中培训生物标志物功能提取器。这些功能可以由针对各种临床任务的各种下游专家模型(诊断,肺严重程度,S/F比)使用。至关重要的是,特定于任务的专家模型的准确性与直接训练此类目标任务的端到端模型相当,同时训练成本大大降低。
translated by 谷歌翻译
估计大规模森林AGB和精细的空间决议对于温室气体会计,监测和验证工作以减轻气候变化的范围变得越来越重要。机载LiDAR对于在包括AGB在内的森林结构的属性建模非常有价值,但大多数LiDAR收集都发生在涵盖不规则,不连续的足迹的本地或区域尺度上,导致不同景观细分市场在各个时间点进行拼布。在这里,作为纽约州(美国)全州森林碳评估的一部分,我们解决了利用激光雷达拼布在景观尺度上的雷达拼凑而成的障碍,包括选择培训数据,对预测的区域或覆盖范围的特定模式的调查错误,并绘制与多个量表的现场清单一致。三种机器学习算法和一个集合模型经过FIA场测量,空气传播的激光雷达和地形,气候和心形地理训练。使用一组严格的地块选择标准,选择了801个FIA图,并从17个叶子覆盖范围(2014-2019)的拼布中绘制的共同定位的点云(2014-2019)。我们的合奏模型用于在预测定义的适用性区域(占激光雷达覆盖率的98%)内生成30 m AGB的预测表面,并将所得的AGB图与FIA绘图级别和面积估计值进行比较。我们的模型总体准确(%RMSE 22-45%; MAE 11.6-29.4 mg ha $^{ - 1} $; me 2.4-6.3 mg ha $^{ - 1} $),解释了73-80%的领域 - 观察到的变化,并得出与FIA基于设计的估计值一致的估计值(FIA 95%CI中的估计值的89%)。我们分享实用的解决方案,以使用LIDAR的时空拼布面临的挑战来满足不断增长的AGB映射需求,以支持森林碳会计和生态系统中的应用。
translated by 谷歌翻译
从物理层和粗粒度接收信号强度指示符(RSSI)测量的细粒度通道状态信息(CSI)互补,中间粒度的空间光束属性(例如,光束SNR)可在毫米波( MMWAVE)在强制波束训练阶段的频带可以重新估算Wi-Fi传感应用。在本文中,我们提出了一种用于Wi-Fi的多频带Wi-Fi融合方法,该方法是在粒度的60GHz处,从Sub-6 GHz和中粒梁SNR中的细粒度CSI的特征进行分层熔化的特征匹配框架。通过以不同的粒度水平与CSI和光束SNR配对的两个特征映射来实现粒度匹配,并将所有配对特征映射到具有可读权重的融合特征映射中。为了进一步解决有限标记的培训数据问题,我们提出了一种基于AutoEncoder的多频带Wi-Fi融合网络,可以以无监督的方式预先培训。一旦预先培训了基于AutoEncoder的融合网络,我们将通过微调融合块来分离解码器并将多任务传感头附加到融合特征映射并从头开始重新培训多任务头。通过内部实验Wi-Fi传感数据集进行多频带Wi-Fi融合框架,跨越三个任务:1)姿势识别; 2)占用感应;和3)室内本地化。与四种基线方法(即,仅CSI,仅限CSIS SNR,输入融合和特征融合)进行比较演示了粒度匹配,提高了多任务传感性能。定量性能被评估为标记培训数据,潜在空间维度和微调学习率的数量的函数。
translated by 谷歌翻译
脑转移经常发生在转移性癌症的患者中。早期和准确地检测脑转移对于放射治疗的治疗计划和预后至关重要。为了提高深入学习的脑转移检测性能,提出了一种称为体积级灵敏度特异性(VSS)的定制检测损失,该损失是单个转移检测灵敏度和(子)体积水平的特异性。作为敏感性和精度始终在转移水平中始终是折射率,可以通过调节VSS损耗中的重量而无需骰子分数系数进行分段转移来实现高精度或高精度。为了减少被检测为假阳性转移的转移样结构,提出了一种时间的现有量作为神经网络的额外输入。我们提出的VSS损失提高了脑转移检测的敏感性,将灵敏度提高了86.7%至95.5%。或者,它将精度提高了68.8%至97.8%。随着额外的时间现有量,在高灵敏度模型中,约45%的假阳性转移减少,高特异性模型的精度达到99.6%。所有转移的平均骰子系数约为0.81。随着高灵敏度和高特异性模型的集合,平均每位患者的1.5个假阳性转移需要进一步检查,而大多数真正的阳性转移确认。该集合学习能够区分从需要特殊专家审查或进一步跟进的转移候选人的高信心真正的阳性转移,特别适合实际临床实践中专家支持的要求。
translated by 谷歌翻译