眼科图像和衍生物,例如视网膜神经纤维层(RNFL)厚度图对于检测和监测眼科疾病至关重要(例如,青光眼)。对于计算机辅助诊断眼疾病,关键技术是自动从眼科图像中提取有意义的特征,这些特征可以揭示与功能视觉丧失相关的生物标志物(例如RNFL变薄模式)。然而,将结构性视网膜损伤与人类视力丧失联系起来的眼科图像的表示,主要是由于患者之间的解剖学变化很大。在存在图像伪像的情况下,这项任务变得更加具有挑战性,由于图像采集和自动细分,这很常见。在本文中,我们提出了一个耐伪造的无监督的学习框架,该框架称为眼科图像的学习表示。 Eyelearn具有一个伪影校正模块,可以学习可以最好地预测无伪影眼镜图像的表示形式。此外,Eyelearn采用聚类引导的对比度学习策略,以明确捕获内部和间形的亲和力。在训练过程中,图像在簇中动态组织,以形成对比样品,其中鼓励在相同或不同的簇中分别学习相似或不同的表示形式。为了评估包冰者,我们使用青光眼患者的现实世界眼科摄影图数据集使用学习的表示形式进行视野预测和青光眼检测。广泛的实验和与最先进方法的比较验证了眼球从眼科图像中学习最佳特征表示的有效性。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
Vision Transformer(VIT)表明了其比卷积神经网络(CNN)的优势,其能够捕获全球远程依赖性以进行视觉表示学习。除了VIT,对比度学习是最近的另一个流行研究主题。尽管以前的对比学习作品主要基于CNN,但一些最新的研究试图共同对VIT进行建模和对比度学习,以增强自我监督的学习。尽管取得了很大的进步,但这些VIT和对比学习的组合主要集中在实例级对比度上,这些对比度通常忽略了全球聚类结构的对比度,并且缺乏直接学习聚类结果(例如图像)的能力。鉴于这一点,本文提出了一种端到端的深层图像聚类方法,称为对比群(VTCC)的视觉变压器(VTCC),据我们所知,该方法首次统一了变压器和对比度学习的对比度学习。图像聚类任务。具体而言,在微型批次中,在每个图像上执行了两个随机增强,我们利用具有两个重量分担视图的VIT编码器作为学习增强样品的表示形式。为了纠正VIT的潜在不稳定,我们结合了一个卷积茎,该卷积茎使用多个堆叠的小卷积而不是斑块投影层中的大卷积,将每个增强样品分为一系列斑块。通过通过主干学到的表示形式,实例投影仪和群集投影仪将进一步用于实例级对比度学习和全球聚类结构学习。在八个图像数据集上进行的广泛实验证明了VTCC的稳定性(在训练中)和优越性(在聚类性能中)比最先进的。
translated by 谷歌翻译
对比度学习最近在无监督的视觉表示学习中显示出巨大的潜力。在此轨道中的现有研究主要集中于图像内不变性学习。学习通常使用丰富的图像内变换来构建正对,然后使用对比度损失最大化一致性。相反,相互影响不变性的优点仍然少得多。利用图像间不变性的一个主要障碍是,尚不清楚如何可靠地构建图像间的正对,并进一步从它们中获得有效的监督,因为没有配对注释可用。在这项工作中,我们提出了一项全面的实证研究,以更好地了解从三个主要组成部分的形象间不变性学习的作用:伪标签维护,采样策略和决策边界设计。为了促进这项研究,我们引入了一个统一的通用框架,该框架支持无监督的内部和间形内不变性学习的整合。通过精心设计的比较和分析,揭示了多个有价值的观察结果:1)在线标签收敛速度比离线标签更快; 2)半硬性样品比硬否定样品更可靠和公正; 3)一个不太严格的决策边界更有利于形象间的不变性学习。借助所有获得的食谱,我们的最终模型(即InterCLR)对多个标准基准测试的最先进的内图内不变性学习方法表现出一致的改进。我们希望这项工作将为设计有效的无监督间歇性不变性学习提供有用的经验。代码:https://github.com/open-mmlab/mmselfsup。
translated by 谷歌翻译
蒙面图像建模(MIM)在各种视觉任务上取得了令人鼓舞的结果。但是,学到的表示形式的有限可区分性表现出来,使一个更强大的视力学习者还有很多值得一试。为了实现这一目标,我们提出了对比度蒙面的自动编码器(CMAE),这是一种新的自我监督的预训练方法,用于学习更全面和有能力的视觉表示。通过详细统一的对比度学习(CL)和掩盖图像模型(MIM),CMAE利用了它们各自的优势,并以强大的实例可辨别性和局部的可感知来学习表示形式。具体而言,CMAE由两个分支组成,其中在线分支是不对称的编码器编码器,而目标分支是动量更新的编码器。在培训期间,在线编码器从蒙面图像的潜在表示中重建了原始图像,以学习整体特征。馈送完整图像的目标编码器通过其在线学习通过对比度学习增强了功能可区分性。为了使CL与MIM兼容,CMAE引入了两个新组件,即用于生成合理的正视图和特征解码器的像素移位,以补充对比度对的特征。多亏了这些新颖的设计,CMAE可以有效地提高了MIM对应物的表示质量和转移性能。 CMAE在图像分类,语义分割和对象检测的高度竞争基准上实现了最先进的性能。值得注意的是,CMAE-BASE在Imagenet上获得了$ 85.3 \%$ $ TOP-1的准确性和$ 52.5 \%$ MIOU的ADE20K,分别超过了$ 0.7 \%\%$ $和$ 1.8 \%$ $。代码将公开可用。
translated by 谷歌翻译
最近,自我监督的表示学习(SSRL)在计算机视觉,语音,自然语言处理(NLP)以及最近的其他类型的模式(包括传感器的时间序列)中引起了很多关注。自我监督学习的普及是由传统模型通常需要大量通知数据进行培训的事实所驱动的。获取带注释的数据可能是一个困难且昂贵的过程。已经引入了自我监督的方法,以通过使用从原始数据自由获得的监督信号对模型进行判别预训练来提高训练数据的效率。与现有的对SSRL的评论不同,该评论旨在以单一模式为重点介绍CV或NLP领域的方法,我们旨在为时间数据提供对多模式自我监督学习方法的首次全面审查。为此,我们1)提供现有SSRL方法的全面分类,2)通过定义SSRL框架的关键组件来引入通用管道,3)根据其目标功能,网络架构和潜在应用程序,潜在的应用程序,潜在的应用程序,比较现有模型, 4)查看每个类别和各种方式中的现有多模式技术。最后,我们提出了现有的弱点和未来的机会。我们认为,我们的工作对使用多模式和/或时间数据的域中SSRL的要求有了一个观点
translated by 谷歌翻译
由于其通过深层神经网络的共同表示学习和聚类的能力,近年来,深层聚类引起了人们的关注。在其最新发展中,对比度学习已成为一种有效的技术,可实质性地提高深度聚类的性能。但是,现有的基于学习的基于对比的深层聚类算法主要集中于一些精心设计的增强(通常具有有限的转换以保留结构),被称为薄弱的增强,但不能超越弱化的增强,以探索更多的机会(随着更具侵略性的转变甚至严重的扭曲)。在本文中,我们提出了一种被称为强烈增强的对比聚类(SACC)的端到端深群集方法,该方法将传统的两夸大视图范式扩展到多种视图,并共同利用强大而弱的增强,以增强深层聚类。特别是,我们利用具有三重共享权重的骨干网络,在该网络中,强烈的增强视图和两个弱化的视图均融合在一起。基于主链产生的表示,弱进行弱化的视图对和强力视图对同时被利用用于实例级的对比度学习(通过实例投影仪)和群集级的对比度学习(通过群集投影仪),与主链一起可以以纯监督的方式共同优化。五个具有挑战性的图像数据集的实验结果表明,我们的SACC方法优于最先进的方法。该代码可在https://github.com/dengxiaozhi/sacc上找到。
translated by 谷歌翻译
已经证明对比学习是有效的,可以减轻医学图像分析中昂贵注释的高需求,这可以捕获图像中的一般图案,并且自然用作各种任务的初始特征提取器。最近的作品主要基于案例明智的歧视,并学习全球歧视特征;然而,他们不能帮助临床医生处理主要由局部相似性分类的微小解剖结构,病变和组织。在这项工作中,我们提出了一般无人监督的框架,以了解来自医学图像的局部歧视特征,以进行模型的初始化。在此事实之后,相同体区域的图像应该共享类似的解剖结构,并且相同结构的像素应该具有类似的语义模式,我们设计神经网络以构建具有相似上下文的像素的局部判别嵌入空间是聚类和异种像素的分散。该网络主要包含两个分支:嵌入分支以生成像素 - WISE Embeddings,以及聚类分支以将相同结构的像素聚集在一起并生成分段。提出了一种区域辨别损失以在互利模式中优化这两个分支,使得通过聚类分支集群聚集在一起的像素共享类似的嵌入式矢量,并且训练模型可以测量像素方面的相似性。当转移到下游任务时,基于我们框架的学习特征提取器显示出更好的泛化能力,这优于来自广泛的最先进的方法,并在彩色眼底和胸部X光中的所有12个下游任务中获胜11。此外,我们利用像素 - 方面的嵌入来测量区域相似度,并提出一种形状引导的跨模块分割框架和中心敏感的单次地标定位算法。
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
图像回归任务,如骨矿物密度(BMD)估计和左心室喷射分数(LVEF)预测,在计算机辅助疾病评估中起重要作用。大多数深度回归方法用单一的回归损耗函数训练神经网络,如MSE或L1损耗。在本文中,我们提出了一种用于深度图像回归的第一个对比学习框架,即adacon,其包括通过新颖的自适应边缘对比损耗和回归预测分支的特征学习分支组成。我们的方法包含标签距离关系作为学习特征表示的一部分,这允许在下游回归任务中进行更好的性能。此外,它可以用作即插即用模块,以提高现有回归方法的性能。我们展示了adacon对来自X射线图像的骨矿物密度估计和来自超声心动图象的X射线图像和左心室喷射分数预测的骨矿物密度估计的有效性。 Adacon分别导致MAE在最先进的BMD估计和LVEF预测方法中相对提高3.3%和5.9%。
translated by 谷歌翻译
由于其最近在减少监督学习的差距方面取得了成功,自我监督的学习方法正在增加计算机愿景的牵引力。在自然语言处理(NLP)中,自我监督的学习和变形金刚已经是选择的方法。最近的文献表明,变压器也在计算机愿景中越来越受欢迎。到目前为止,当使用大规模监督数据或某种共同监督时,视觉变压器已被证明可以很好地工作。在教师网络方面。这些监督的普试视觉变压器在下游任务中实现了非常好的变化,变化最小。在这项工作中,我们调查自我监督学习的预用图像/视觉变压器,然后使用它们进行下游分类任务的优点。我们提出了自我监督的视觉变压器(坐在)并讨论了几种自我监督的培训机制,以获得借口模型。静坐的架构灵活性允许我们将其用作自动统计器,并无缝地使用多个自我监控任务。我们表明,可以在小规模数据集上进行预训练,以便在小型数据集上进行下游分类任务,包括几千个图像而不是数百万的图像。使用公共协议对所提出的方法进行评估标准数据集。结果展示了变压器的强度及其对自我监督学习的适用性。我们通过大边缘表现出现有的自我监督学习方法。我们还观察到坐着很好,很少有镜头学习,并且还表明它通过简单地训练从坐的学到的学习功能的线性分类器来学习有用的表示。预先训练,FineTuning和评估代码将在以下:https://github.com/sara-ahmed/sit。
translated by 谷歌翻译
The past two decades have seen increasingly rapid advances in the field of multi-view representation learning due to it extracting useful information from diverse domains to facilitate the development of multi-view applications. However, the community faces two challenges: i) how to learn robust representations from a large amount of unlabeled data to against noise or incomplete views setting, and ii) how to balance view consistency and complementary for various downstream tasks. To this end, we utilize a deep fusion network to fuse view-specific representations into the view-common representation, extracting high-level semantics for obtaining robust representation. In addition, we employ a clustering task to guide the fusion network to prevent it from leading to trivial solutions. For balancing consistency and complementary, then, we design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation. These modules are incorporated into a unified method known as CLustering-guided cOntrastiVE fusioN (CLOVEN). We quantitatively and qualitatively evaluate the proposed method on five datasets, demonstrating that CLOVEN outperforms 11 competitive multi-view learning methods in clustering and classification. In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors. Furthermore, the visualization analysis shows that CLOVEN can preserve the intrinsic structure of view-specific representation while also improving the compactness of view-commom representation. Our source code will be available soon at https://github.com/guanzhou-ke/cloven.
translated by 谷歌翻译
监管基于深度学习的方法,产生医学图像分割的准确结果。但是,它们需要大量标记的数据集,并获得它们是一种艰苦的任务,需要临床专业知识。基于半/自我监督的学习方法通​​过利用未标记的数据以及有限的注释数据来解决此限制。最近的自我监督学习方法使用对比损失来从未标记的图像中学习良好的全球层面表示,并在像想象网那样的流行自然图像数据集上实现高性能。在诸如分段的像素级预测任务中,对于学习良好的本地级别表示以及全局表示来说至关重要,以实现更好的准确性。然而,现有的局部对比损失的方法的影响仍然是学习良好本地表现的限制,因为类似于随机增强和空间接近定义了类似和不同的局部区域;由于半/自我监督设置缺乏大规模专家注释,而不是基于当地地区的语义标签。在本文中,我们提出了局部对比损失,以便通过利用从未标记的图像的未标记图像的伪标签获得的语义标签信息来学习用于分割的良好像素级别特征。特别地,我们定义了建议的损失,以鼓励具有相同伪标签/标签的像素的类似表示,同时与数据集中的不同伪标签/标签的像素的表示。我们通过联合优化标记和未标记的集合和仅限于标记集的分割损失,通过联合优化拟议的对比损失来进行基于伪标签的自培训和培训网络。我们在三个公共心脏和前列腺数据集上进行了评估,并获得高分割性能。
translated by 谷歌翻译
变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
B扫描超声模式中图像的精确和快速分类对于诊断眼部疾病至关重要。然而,在超声波中区分各种疾病仍然挑战经验丰富的眼科医生。因此,在这项工作中开发了一个新颖的对比度截面网络(CDNET),旨在应对超声图像中眼异常的细粒度图像分类(FGIC)挑战,包括眼内肿瘤(IOT),视网膜脱离(RD),后堆肥葡萄球菌(PSS)和玻璃体出血(VH)。 CDNET的三个基本组成部分分别是弱监督的病变定位模块(WSLL),对比度多Zoom(CMZ)策略和超级性对比度分解损失(HCD-LOSS)。这些组件促进了在输入和输出方面的细粒度识别的特征分离。所提出的CDNET在我们的ZJU Ocular Ultrasound数据集(Zjuuld)上进行了验证,该数据集由5213个样品组成。此外,在两个公共且广泛使用的胸部X射线FGIC基准上验证了CDNET的概括能力。定量和定性结果证明了我们提出的CDNET的功效,该CDNET在FGIC任务中实现了最新的性能。代码可在以下网址获得:https://github.com/zeroonegame/cdnet-for-ous-fgic。
translated by 谷歌翻译
深度聚类最近引起了极大的关注。尽管取得了显着的进展,但以前的大多数深度聚类作品仍有两个局限性。首先,其中许多集中在某些基于分布的聚类损失上,缺乏通过对比度学习来利用样本(或增强)关系的能力。其次,他们经常忽略了间接样本结构信息,从而忽略了多尺度邻里结构学习的丰富可能性。鉴于这一点,本文提出了一种新的深聚类方法,称为图像聚类,其中包括对比度学习和多尺度图卷积网络(IcicleGCN),该网络(ICICELGCN)也弥合了卷积神经网络(CNN)和图形卷积网络(GCN)之间的差距。作为对比度学习与图像聚类任务的多尺度邻域结构学习之间的差距。所提出的IcicleGCN框架由四个主要模块组成,即基于CNN的主链,实例相似性模块(ISM),关节群集结构学习和实例重建模块(JC-SLIM)和多尺度GCN模块(M -GCN)。具体而言,在每个图像上执行了两个随机增强,使用两个重量共享视图的骨干网络用于学习增强样品的表示形式,然后将其馈送到ISM和JC-SLIM以进行实例级别和集群级别的对比度分别学习。此外,为了实施多尺度的邻域结构学习,通过(i)通过(i)层次融合的层相互作用和(ii)共同自适应学习确保他们的最后一层,同时对两个GCN和自动编码器进行了同时培训。层输出分布保持一致。多个图像数据集上的实验证明了IcicleGCN优于最先进的群集性能。
translated by 谷歌翻译
使用超越欧几里德距离的神经网络,深入的Bregman分歧测量数据点的分歧,并且能够捕获分布的发散。在本文中,我们提出了深深的布利曼对视觉表现的对比学习的分歧,我们的目标是通过基于功能Bregman分歧培训额外的网络来提高自我监督学习中使用的对比损失。与完全基于单点之间的分歧的传统对比学学习方法相比,我们的框架可以捕获分布之间的发散,这提高了学习表示的质量。我们展示了传统的对比损失和我们提出的分歧损失优于基线的结合,并且最先前的自我监督和半监督学习的大多数方法在多个分类和对象检测任务和数据集中。此外,学习的陈述在转移到其他数据集和任务时概括了良好。源代码和我们的型号可用于补充,并将通过纸张释放。
translated by 谷歌翻译
对比性自我监督学习(CSL)是一种实用解决方案,它以无监督的方法从大量数据中学习有意义的视觉表示。普通的CSL将从神经网络提取的特征嵌入到特定的拓扑结构上。在训练进度期间,对比度损失将同一输入的不同视图融合在一起,同时将不同输入分开的嵌入。 CSL的缺点之一是,损失项需要大量的负样本才能提供更好的相互信息理想。但是,通过较大的运行批量大小增加负样本的数量也增强了错误的负面影响:语义上相似的样品与锚分开,因此降低了下游性能。在本文中,我们通过引入一个简单但有效的对比学习框架来解决这个问题。关键的见解是使用暹罗风格的度量损失来匹配原型内特征,同时增加了原型间特征之间的距离。我们对各种基准测试进行了广泛的实验,其中结果证明了我们方法在提高视觉表示质量方面的有效性。具体而言,我们使用线性探针的无监督预训练的Resnet-50在Imagenet-1K数据集上超过了受访的训练有素的版本。
translated by 谷歌翻译
不完整的多视图聚类旨在通过使用来自多种模式的数据来增强聚类性能。尽管已经提出了几种研究此问题的方法,但以下缺点仍然存在:1)很难学习潜在的互补性但不使用标签信息而保持一致性的潜在表示; 2)因此,当完整的数据稀缺时,在不完整的数据中未能充分利用不完整数据中的隐藏信息会导致次优群集性能。在本文中,我们提出了与生成对抗网络(CIMIC-GAN)的对比度不完整的多视图图像聚类,该网络使用GAN填充不完整的数据并使用双对比度学习来学习完整和不完整的数据的一致性。更具体地说,考虑到多种方式之间的多样性和互补信息,我们将完整和不完整数据的自动编码表示为双对比度学习,以实现学习一致性。将gan集成到自动编码过程中不仅可以充分利用不完整数据的新功能,而且可以在存在高数据缺失率的情况下更好地概括该模型。在\ textColor {black} {四}广泛使用的数据集上进行的实验表明,cimic-gan优于最先进的不完整的多视图聚类方法。
translated by 谷歌翻译