发现别人认为是我们信息收集策略的关键方面。现在,人们可以积极利用信息技术来寻找和理解他人的想法,这要归功于越来越多的意见资源(例如在线评论网站和个人博客)的越来越多。由于其在理解人们的意见方面的关键功能,因此情感分析(SA)是一项至关重要的任务。另一方面,现有的研究主要集中在英语上,只有少量研究专门研究低资源语言。对于情感分析,这项工作根据用户评估提供了一个新的多级乌尔都语数据集。高音扬声器网站用于获取乌尔都语数据集。我们提出的数据集包括10,000项评论,这些评论已被人类专家精心归类为两类:正面,负面。这项研究的主要目的是构建一个手动注释的数据集进行乌尔都语情绪分析,并确定基线结果。采用了五种不同的词典和规则的算法,包括NaiveBayes,Stanza,TextBlob,Vader和Flair,实验结果表明,其精度为70%的天赋优于其他经过测试的算法。
translated by 谷歌翻译
创新是尝试新解决方案的关键组成部分,以使学生有效地学习,并以与自己的经验相对应的方式来学习聊天机器人是这些新解决方案之一。聊天机器人今天面临的主要问题之一是模仿人类的语言,他们试图找到对意见的最佳答案,这不是人类对话通常的运作方式,而是考虑到以前的消息并在其上构建。选择了极端的编程方法来使用Chatterbot,Pyside2,Web刮擦和TampermonKey作为测试用例。机器人发生的问题发生了,该机器人需要进行更多的培训才能完美工作,但是集成和网络刮擦有效,使我们可以与聊天机器人进行交谈。我们展示了将AI机器人集成到教育环境中的合理性。
translated by 谷歌翻译
互联网上的自以为是的数据量正在迅速增加。越来越多的人在评论,讨论论坛,微博和一般社交媒体中分享他们的想法和意见。由于意见在所有人类活动中都是核心,因此已应用情绪分析来获得有关此类数据的见解。有几种情感分类的方法。主要缺点是缺乏用于分类和高级可视化的标准化解决方案。在这项研究中,提出了用于在线社交网络分析的情感分析仪仪表板。这是为了使人们能够获得对他们有趣的主题的见解。该工具允许用户在仪表板中运行所需的情感分析算法。除了提供几种可视化类型外,仪表板还促进了来自情感分类的原始数据结果,可以下载以进行进一步分析。
translated by 谷歌翻译
在当今的世界中,每个人都以某种方式表现出来,而该项目的重点是人们使用Twitter的数据(一个微博平台)的数据,人们对英国和印度的电价上涨的看法,人们在该平台上发布了消息,人们发布了消息,称为Tweets。因为许多人的收入不好,他们必须缴纳如此多的税款和账单,因此如今,维持房屋已成为有争议的问题。尽管政府提供了补贴计划来补偿人们的电费,但不受人们的欢迎。在这个项目中,目的是对Twitter上表达的人们的表达和观点进行情感分析。为了掌握电价的意见,有必要对能源市场的政府和消费者进行情感分析。此外,这些媒体上存在的文本本质上是非结构化的,因此要处理它们,我们首先需要预处理数据。有很多功能提取技术,例如单词袋,tf-idf(术语频率为单位的文档频率),单词嵌入,基于NLP的功能,例如Word Count。在该项目中,我们分析了特征TF-IDF单词级别对情感分析数据集的影响。我们发现,通过使用TF-IDF单词级别的性能分析的表现比使用N-Gram功能高3-4。使用四种分类算法进行分析,包括幼稚的贝叶斯,决策树,随机森林和逻辑回归,并考虑F评分,准确性,精度和召回性能参数。
translated by 谷歌翻译
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment with obstacles is challenging and cannot be guaranteed in a finite time. We propose an algorithm in which the accuracy of the path planning is iteratively increased. The approach provides a certificate when the uncertainties on estimates of the shortest paths become small enough to guarantee the optimality of the goal assignment. To this end, we apply results from assignment sensitivity assuming upper and lower bounds on the length of the shortest paths. We then provide polynomial-time methods to find such bounds by applying sampling-based path planning. The upper bounds are given by feasible paths, the lower bounds are obtained by expanding the sample set and leveraging knowledge of the sample dispersion. We demonstrate the application of the proposed method with a multi-robot path-planning case study.
translated by 谷歌翻译
Fine-tuning a Pre-trained Language Model (PLM) on a specific downstream task has been a well-known paradigm in Natural Language Processing. However, with the ever-growing size of PLMs, training the entire model on several downstream tasks becomes very expensive and resource-hungry. Recently, different Parameter Efficient Tuning (PET) techniques are proposed to improve the efficiency of fine-tuning PLMs. One popular category of PET methods is the low-rank adaptation methods which insert learnable truncated SVD modules into the original model either sequentially or in parallel. However, low-rank decomposition suffers from limited representation power. In this work, we address this problem using the Kronecker product instead of the low-rank representation. We introduce KronA, a Kronecker product-based adapter module for efficient fine-tuning of Transformer-based PLMs. We apply the proposed methods for fine-tuning T5 on the GLUE benchmark to show that incorporating the Kronecker-based modules can outperform state-of-the-art PET methods.
translated by 谷歌翻译
Large language models show improved downstream task performance when prompted to generate step-by-step reasoning to justify their final answers. These reasoning steps greatly improve model interpretability and verification, but objectively studying their correctness (independent of the final answer) is difficult without reliable methods for automatic evaluation. We simply do not know how often the stated reasoning steps actually support the final end task predictions. In this work, we present ROSCOE, a suite of interpretable, unsupervised automatic scores that improve and extend previous text generation evaluation metrics. To evaluate ROSCOE against baseline metrics, we design a typology of reasoning errors and collect synthetic and human evaluation scores on commonly used reasoning datasets. In contrast with existing metrics, ROSCOE can measure semantic consistency, logicality, informativeness, fluency, and factuality - among other traits - by leveraging properties of step-by-step rationales. We empirically verify the strength of our metrics on five human annotated and six programmatically perturbed diagnostics datasets - covering a diverse set of tasks that require reasoning skills and show that ROSCOE can consistently outperform baseline metrics.
translated by 谷歌翻译
Machine Learning (ML) technologies have been increasingly adopted in Medical Cyber-Physical Systems (MCPS) to enable smart healthcare. Assuring the safety and effectiveness of learning-enabled MCPS is challenging, as such systems must account for diverse patient profiles and physiological dynamics and handle operational uncertainties. In this paper, we develop a safety assurance case for ML controllers in learning-enabled MCPS, with an emphasis on establishing confidence in the ML-based predictions. We present the safety assurance case in detail for Artificial Pancreas Systems (APS) as a representative application of learning-enabled MCPS, and provide a detailed analysis by implementing a deep neural network for the prediction in APS. We check the sufficiency of the ML data and analyze the correctness of the ML-based prediction using formal verification. Finally, we outline open research problems based on our experience in this paper.
translated by 谷歌翻译
Fairness-aware mining of massive data streams is a growing and challenging concern in the contemporary domain of machine learning. Many stream learning algorithms are used to replace humans at critical decision-making points e.g., hiring staff, assessing credit risk, etc. This calls for handling massive incoming information with minimum response delay while ensuring fair and high quality decisions. Recent discrimination-aware learning methods are optimized based on overall accuracy. However, the overall accuracy is biased in favor of the majority class; therefore, state-of-the-art methods mainly diminish discrimination by partially or completely ignoring the minority class. In this context, we propose a novel adaptation of Na\"ive Bayes to mitigate discrimination embedded in the streams while maintaining high predictive performance for both the majority and minority classes. Our proposed algorithm is simple, fast, and attains multi-objective optimization goals. To handle class imbalance and concept drifts, a dynamic instance weighting module is proposed, which gives more importance to recent instances and less importance to obsolete instances based on their membership in minority or majority class. We conducted experiments on a range of streaming and static datasets and deduced that our proposed methodology outperforms existing state-of-the-art fairness-aware methods in terms of both discrimination score and balanced accuracy.
translated by 谷歌翻译
神经科学方面的巨大努力正在努力绘制许多新物种的连接群,包括果蝇果蝇的接近完成。重要的是要问这些模型是否可以使人工智能受益。在这项工作中,我们提出了两个基本问题:(1)生物连接组可以在机器学习中提供的何处以及何时提供使用,(2)哪些设计原理对于提取连接组的良好表示是必要的。为此,我们将秀丽隐杆线虫线虫的运动电路转化为以不同水平的生物物理现实主义水平的人工神经网络,并评估了这些网络在运动和非运动行为任务上训练这些网络的结果。我们证明,生物物理现实主义不必维持使用生物回路的优势。我们还确定,即使没有保留确切的接线图,建筑统计数据也提供了有价值的先验。最后,我们表明,虽然秀丽隐杆线虫运动电路对运动问题提供了强大的感应偏见,但其结构可能会阻碍与运动无关的任务(例如视觉分类问题)。
translated by 谷歌翻译