以图形为中心的人工智能(Graph AI)在建模自然界中普遍存在的相互作用系统(从生物学的动态系统到粒子物理学)方面取得了显着成功。数据的异质性的增加,需要对可以结合多种电感偏见的图形神经体系结构。但是,将来自各种来源的数据组合起来是具有挑战性的,因为适当的归纳偏差可能会因数据模式而异。多模式学习方法融合了多个数据模式,同时利用跨模式依赖性来应对这一挑战。在这里,我们调查了以图形为中心的AI的140项研究,并意识到,使用图越来越多地将各种数据类型汇集在一起​​,并将其馈入复杂的多模型模型。这些模型分为图像,语言和知识接地的多模式学习。我们提出了基于此分类的多模式图学习的算法蓝图。该蓝图是通过选择适当的四个不同组件来处理多模式数据的最先进架构的方法。这项工作可以为标准化精致的多模式体系结构的设计铺平道路,以解决高度复杂的现实世界问题。
translated by 谷歌翻译
由于事后解释越来越多地用于了解图神经网络(GNN)的行为,因此评估GNN解释的质量和可靠性至关重要。但是,评估GNN解释的质量是具有挑战性的,因为现有的图形数据集对给定任务没有或不可靠的基础真相解释。在这里,我们介绍了一个合成图数据生成器ShapeGgen,该生成可以生成各种基准数据集(例如,不同的图形大小,度分布,同粒细胞与异性图)以及伴随着地面真相解释。此外,生成各种合成数据集和相应的基础真相解释的灵活性使我们能够模仿各种现实世界应用程序生成的数据。我们将ShapeGgen和几个现实图形数据集包括在开源图形图库GraphXai中。除了带有基础真相说明的合成和现实图形数据集外,GraphXAI还提供数据加载程序,数据处理功能,可视化器,GNN模型实现和评估指标,以基准基准GNN解释性方法的性能。
translated by 谷歌翻译
尽管在最近的文献中提出了几种类型的事后解释方法(例如,特征归因方法),但在系统地以有效且透明的方式进行系统基准测试这些方法几乎没有工作。在这里,我们介绍了OpenXai,这是一个全面且可扩展的开源框架,用于评估和基准测试事后解释方法。 OpenXAI由以下关键组件组成:(i)灵活的合成数据生成器以及各种现实世界数据集,预训练的模型和最新功能属性方法的集合,(ii)开源实现22个定量指标,用于评估忠诚,稳定性(稳健性)和解释方法的公平性,以及(iii)有史以来第一个公共XAI XAI排行榜对基准解释。 OpenXAI很容易扩展,因为用户可以轻松地评估自定义说明方法并将其纳入我们的排行榜。总体而言,OpenXAI提供了一种自动化的端到端管道,该管道不仅简化并标准化了事后解释方法的评估,而且还促进了基准这些方法的透明度和可重复性。 OpenXAI数据集和数据加载程序,最先进的解释方法的实现和评估指标以及排行榜,可在https://open-xai.github.io/上公开获得。
translated by 谷歌翻译
在时间序列上进行预训练会带来独特的挑战,这是由于预训练和目标域之间的潜在不匹配,例如时间动力学的变化,快速变化的趋势以及远距离循环效应和短期循环效应,这会导致下游差的差表现。尽管域适应方法可以减轻这些偏移,但大多数方法都需要直接从目标域中进行示例,从而使其次优于预训练。为了应对这一挑战,方法需要适应具有不同时间动力学的目标域,并且能够在预训练期间看到任何目标示例。相对于其他方式,在时间序列中,我们期望同一示例的基于时间和频率的表示形式靠近时间频率。为此,我们认为时间频一致性(TF-C)(将特定示例的基于时间的社区嵌入到其基于频率的邻居和后背)是可取的。由TF-C激发,我们定义了一个可分解的预训练模型,其中自我监督信号由时间和频率分量之间的距离提供,每个信号通过对比度估计单独训练。我们在八个数据集上评估了新方法,包括电诊断测试,人类活动识别,机械故障检测和身体状态监测。针对八种最先进方法的实验表明,在一对一的设置中,TF-C平均比基准平均超过15.4%(F1分数)(例如,在EMG数据上对EEG预测的模型进行微调)和在具有挑战性的一对一环境中,最多可达8.4%(F1得分),这反映了现实世界应用中出现的场景广度。源代码和数据集可在https://anonymon.4open.science/r/tfc-pretraining-6b07上找到。
translated by 谷歌翻译
目的:疾病知识图是一种连接,组织和访问有关疾病的不同信息的方式,对人工智能(AI)有很多好处。为了创建知识图,有必要以疾病概念之间的关系形式从多模式数据集中提取知识,并使概念和关系类型正常化。方法:我们介绍了Remap,这是一种多式模式提取和分类的方法。重新启动机器学习方法将部分不完整的知识图和医学语言数据集嵌入紧凑的潜在矢量空间中,然后将多模式嵌入以进行最佳疾病关系提取。结果:我们将重新映射方法应用于具有96,913个关系的疾病知识图和124万个句子的文本数据集。在由人类专家注释的数据集中,Remap通过将疾病知识图与文本信息融合,将基于文本的疾病关系提取提高了10.0%(准确性)和17.2%(F1分数)。此外,重建利用文本信息以推荐知识图中的新关系,优于基于图的方法,高于8.4%(准确性)和10.4%(F1得分)。结论:重塑是通过融合结构化知识和文本信息来提取和分类疾病关系的多模式方法。重映提供了灵活的神经体系结构,可轻松找到,访问和验证疾病概念之间的AI驱动关系。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
我们从第一批原则提供了一个理论分析,该原则在预训练和微调性能的关系归纳偏差之间建立了新的联系,同时提供了一般预训练模型的延长视图。我们进一步探讨了现有的预训练方法如何强加相关的归纳偏差,发现绝大多数现有方法几乎专注于以帧内方式建模的关系,而不是每种样本方式。我们建立了这些调查结果,这些发现与跨越3个数据模式和10个下游任务的标准基准测试。这些调查验证了我们的理论分析,并提供了一种方法,以产生新的预训练方法,该方法与现有的方法符合用户指定的关系图。
translated by 谷歌翻译
We present the OPEN GRAPH BENCHMARK (OGB), a diverse set of challenging and realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine learning (ML) research. OGB datasets are large-scale, encompass multiple important graph ML tasks, and cover a diverse range of domains, ranging from social and information networks to biological networks, molecular graphs, source code ASTs, and knowledge graphs. For each dataset, we provide a unified evaluation protocol using meaningful application-specific data splits and evaluation metrics. In addition to building the datasets, we also perform extensive benchmark experiments for each dataset. Our experiments suggest that OGB datasets present significant challenges of scalability to large-scale graphs and out-of-distribution generalization under realistic data splits, indicating fruitful opportunities for future research. Finally, OGB provides an automated end-to-end graph ML pipeline that simplifies and standardizes the process of graph data loading, experimental setup, and model evaluation. OGB will be regularly updated and welcomes inputs from the community. OGB datasets as well as data loaders, evaluation scripts, baseline code, and leaderboards are publicly available at https://ogb.stanford.edu.
translated by 谷歌翻译