颅内动脉瘤(UIA)的生长是破裂的预测指标。因此,为了进一步的成像监视和治疗计划,重要的是能够预测UIA是否会根据初始基线飞行时间MRA(TOF-MRA)增长。众所周知,UIA的大小和形状是动脉瘤生长和/或破裂的预测指标。我们对使用网状卷积神经网络进行基线TOF-MRA的未来UIA增长预测进行了可行性研究。我们包括151个TOF-MRA,其中169个UIA基于生长的临床定义,其中49个UIA被归类为生长,而120个UIA被归类为稳定(随访扫描中的大小> 1 mm)。从TOF-MRAS分割了UIA,并自动生成网格。我们研究了仅UIA网格的输入和包括UIA和周围母体血管在内的利益区域(ROI)网格。我们开发了一个分类模型来预测将增长或保持稳定的UIA。该模型由一个网状卷积神经网络组成,其中包括描述表面拓扑的形状指数和曲面的其他新型输入边缘特征。研究了输入边缘中点坐标是否影响模型性能。具有最高AUC(63.8%)的模型用于生长预测,使用了具有输入边缘中点坐标特征的UIA网格(平均F1得分= 62.3%,准确度= 66.9%,灵敏度= 57.3%,特异性= 70.8%)。我们提出了一个基于网状卷积神经网络的未来UIA增长预测模型,其结果有希望。
translated by 谷歌翻译
医学图像分割模型的性能指标用于衡量参考注释和预测之间的一致性。在开发此类模型中,使用了一组通用指标,以使结果更具可比性。但是,公共数据集中的分布与临床实践中遇到的案例之间存在不匹配。许多常见的指标无法衡量这种不匹配的影响,尤其是对于包含不确定,小或空参考注释的临床数据集。因此,可能无法通过此类指标来验证模型在临床上有意义的一致性。评估临床价值的维度包括独立于参考注释量的大小,考虑参考注释的不确定性,体积计和/或位置一致性的奖励以及对空参考注释正确分类的奖励。与普通的公共数据集不同,我们的内部数据集更具代表性。它包含不确定的,小或空的参考注释。我们研究了有关深度学习框架的预测的公开度量指标,以确定哪些设置共同指标可提供有意义的结果。我们将公共基准数据集进行比较而没有不确定,小或空参考注释。该代码将发布。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
语音神经调节物有可能为患有扰动或休闲症的人提供沟通。最近的进展已经证明了从放置在皮质表面上的电加电网的高质量文本解码和语音合成。在这里,我们研究了较少的侵入性测量模态,即立体定向脑电图(SEEG),其提供来自多个脑区的稀疏抽样,包括皮质区域。为了评估Seeg是否也可用于综合神经录音的高质量音频,我们采用了一种基于现代深度学习方法的经常性编码器 - 解码器框架。我们证明,尽管有限的训练数据,但是可以从这些微创录音来重建高质量的言论。最后,我们利用变分特征丢失来成功识别最具信息丰富的电极触点。
translated by 谷歌翻译
放射线学使用定量医学成像特征来预测临床结果。目前,在新的临床应用中,必须通过启发式试验和纠正过程手动完成各种可用选项的最佳放射组方法。在这项研究中,我们提出了一个框架,以自动优化每个应用程序的放射线工作流程的构建。为此,我们将放射线学作为模块化工作流程,并为每个组件包含大量的常见算法。为了优化每个应用程序的工作流程,我们使用随机搜索和结合使用自动化机器学习。我们在十二个不同的临床应用中评估我们的方法,从而在曲线下导致以下区域:1)脂肪肉瘤(0.83); 2)脱粘型纤维瘤病(0.82); 3)原发性肝肿瘤(0.80); 4)胃肠道肿瘤(0.77); 5)结直肠肝转移(0.61); 6)黑色素瘤转移(0.45); 7)肝细胞癌(0.75); 8)肠系膜纤维化(0.80); 9)前列腺癌(0.72); 10)神经胶质瘤(0.71); 11)阿尔茨海默氏病(0.87);和12)头颈癌(0.84)。我们表明,我们的框架具有比较人类专家的竞争性能,优于放射线基线,并且表现相似或优于贝叶斯优化和更高级的合奏方法。最后,我们的方法完全自动优化了放射线工作流的构建,从而简化了在新应用程序中对放射线生物标志物的搜索。为了促进可重复性和未来的研究,我们公开发布了六个数据集,框架的软件实施以及重现这项研究的代码。
translated by 谷歌翻译
We demonstrate a proof-of-concept of a large language model conducting corporate lobbying related activities. We use an autoregressive large language model (OpenAI's text-davinci-003) to determine if proposed U.S. Congressional bills are relevant to specific public companies and provide explanations and confidence levels. For the bills the model deems as relevant, the model drafts a letter to the sponsor of the bill in an attempt to persuade the congressperson to make changes to the proposed legislation. We use hundreds of ground-truth labels of the relevance of a bill to a company to benchmark the performance of the model, which outperforms the baseline of predicting the most common outcome of irrelevance. However, we test the ability to determine the relevance of a bill with the previous OpenAI GPT-3 model (text-davinci-002), which was state-of-the-art on many language tasks until text-davinci-003 was released on November 28, 2022. The performance of text-davinci-002 is worse than simply always predicting that a bill is irrelevant to a company. These results suggest that, as large language models continue to improve core natural language understanding capabilities, performance on corporate lobbying related tasks will continue to improve. We then discuss why this could be problematic for societal-AI alignment.
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译
In large-scale machine learning, recent works have studied the effects of compressing gradients in stochastic optimization in order to alleviate the communication bottleneck. These works have collectively revealed that stochastic gradient descent (SGD) is robust to structured perturbations such as quantization, sparsification, and delays. Perhaps surprisingly, despite the surge of interest in large-scale, multi-agent reinforcement learning, almost nothing is known about the analogous question: Are common reinforcement learning (RL) algorithms also robust to similar perturbations? In this paper, we investigate this question by studying a variant of the classical temporal difference (TD) learning algorithm with a perturbed update direction, where a general compression operator is used to model the perturbation. Our main technical contribution is to show that compressed TD algorithms, coupled with an error-feedback mechanism used widely in optimization, exhibit the same non-asymptotic theoretical guarantees as their SGD counterparts. We then extend our results significantly to nonlinear stochastic approximation algorithms and multi-agent settings. In particular, we prove that for multi-agent TD learning, one can achieve linear convergence speedups in the number of agents while communicating just $\tilde{O}(1)$ bits per agent at each time step. Our work is the first to provide finite-time results in RL that account for general compression operators and error-feedback in tandem with linear function approximation and Markovian sampling. Our analysis hinges on studying the drift of a novel Lyapunov function that captures the dynamics of a memory variable introduced by error feedback.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Research on automated essay scoring has become increasing important because it serves as a method for evaluating students' written-responses at scale. Scalable methods for scoring written responses are needed as students migrate to online learning environments resulting in the need to evaluate large numbers of written-response assessments. The purpose of this study is to describe and evaluate three active learning methods than can be used to minimize the number of essays that must be scored by human raters while still providing the data needed to train a modern automated essay scoring system. The three active learning methods are the uncertainty-based, the topological-based, and the hybrid method. These three methods were used to select essays included as part of the Automated Student Assessment Prize competition that were then classified using a scoring model that was training with the bidirectional encoder representations from transformer language model. All three active learning methods produced strong results, with the topological-based method producing the most efficient classification. Growth rate accuracy was also evaluated. The active learning methods produced different levels of efficiency under different sample size allocations but, overall, all three methods were highly efficient and produced classifications that were similar to one another.
translated by 谷歌翻译