Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.
translated by 谷歌翻译
量子机学习(QML)中的内核方法最近引起了人们的重大关注,作为在数据分析中获得量子优势的潜在候选者。在其他有吸引力的属性中,当训练基于内核的模型时,可以保证由于训练格局的凸度而找到最佳模型的参数。但是,这是基于以下假设:量子内核可以从量子硬件有效获得。在这项工作中,我们从准确估计内核值所需的资源的角度研究了量子内核的训练性。我们表明,在某些条件下,可以将量子内核在不同输入数据上的值呈指数浓缩(在量子数中)指向一些固定值,从而导致成功训练所需的测量数量的指数缩放。我们确定了可以导致集中度的四个来源,包括:数据嵌入,全球测量,纠缠和噪声的表达性。对于每个来源,分析得出量子内核的相关浓度结合。最后,我们表明,在处理经典数据时,训练用内核比对方法嵌入的参数化数据也容易受到指数浓度的影响。我们的结果通过数值仿真来验证几个QML任务。总体而言,我们提供指南,表明应避免某些功能,以确保量子内核方法的有效评估和训练性。
translated by 谷歌翻译
在标准量子传感(QS)任务中,One旨在通过系统测量结果估算未知参数$ \ theta $,该参数$ \ theta $编码为$ n $ qubit的探测态。此任务的成功取决于将参数的变化与系统响应$ \ MATHCAL {r}(\ theta)$(即测量结果的变化)相关联的能力。对于简单的情况,$ \ Mathcal {r}(\ theta)$的形式是已知的,但是对于现实情况而言,不能说相同,因为不存在一般的封闭式表达式。在这项工作中,我们为QS提供了基于推理的方案。我们表明,对于一般的编码统一家庭,$ \ Mathcal {r}(\ theta)$只能通过仅在$ 2N+1 $参数下测量系统响应来充分表征。反过来,这使我们能够在测量响应中推断未知参数的值,并确定感应方案的灵敏度,这表征了其整体性能。我们表明,如果一个人以许多镜头来测量系统响应,则推理错误的可能性很小,但仅缩放为$ \ omega(\ log^3(n)/\ delta^2) $。此外,所提供的框架可以广泛应用,因为它对于任意探针状态和测量方案仍然有效,甚至在存在量子噪声的情况下也保持。我们还讨论了如何将结果扩展到统一家庭之外。最后,为了展示我们的方法,我们在实际量子硬件和数值模拟中实现了它的QS任务。
translated by 谷歌翻译
量子机学习(QML)模型旨在从量子状态中编码的数据中学习。最近,已经表明,几乎没有归纳偏差的模型(即,对模型中嵌入的问题没有假设)可能存在训练性和概括性问题,尤其是对于大问题。因此,开发编码与当前问题有关的信息的方案是至关重要的。在这项工作中,我们提出了一个简单但功能强大的框架,其中数据中的基本不向导用于构建QML模型,该模型通过构造尊重这些对称性。这些所谓的组不变模型产生的输出在对称组$ \ mathfrak {g} $的任何元素的动作下保持不变。我们提出了理论结果,基于$ \ mathfrak {g} $ - 不变型模型的设计,并通过几个范式QML分类任务来体现其应用程序,包括$ \ mathfrak {g} $是一个连续的谎言组,也是一个lie group,也是一个。离散对称组。值得注意的是,我们的框架使我们能够以一种优雅的方式恢复文献的几种知名算法,并发现了新的算法。综上所述,我们期望我们的结果将有助于为QML模型设计采用更多几何和群体理论方法铺平道路。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
高品质,大型数据集在古典机器学习的发展和成功中发挥了至关重要的作用。量子机器学习(QML)是一个新的领域,旨在使用量子计算机进行数据分析,希望获得某种量子的量子优势。虽然大多数提议的QML架构是使用经典数据集的基准测试,但仍存在古典数据集上的QML是否会实现这样的优势。在这项工作中,我们争辩说,应该使用由量子状态组成的量子数据集。为此目的,我们介绍了由量子状态组成的Ntangled DataSet,其数量和多分纠缠的类型。我们首先展示如何培训量子神经网络,以在Ntangled DataSet中生成状态。然后,我们使用Ntangled DataSet来获得用于监督学习分类任务的基准测试QML模型。我们还考虑一个基于替代的纠缠基数据集,其是可扩展的,并且由量子电路准备的状态与不同深度的状态组成。作为我们的结果的副产品,我们介绍了一种用于产生多重石纠缠态的新方法,为量子纠缠理论提供量子神经网络的用例。
translated by 谷歌翻译
优化参数化量子电路(PQC)是使用近期量子计算机的领先方法。但是,对于PQC的成本函数景观知之甚少,这阻碍了量子意识到的优化器的进展。在这项工作中,我们研究了PQCS已观察到的三种不同景观特征之间的联系:(1)指数呈指数消失的梯度(称为贫瘠的高原),(2)关于平均值的成本成本集中,以及(3)(3)指数的狭窄小小的(称为狭窄的峡谷)。我们在分析上证明,这三个现象一起出现,即当发生一个现象时,其他两个现象也是如此。该结果的一个关键含义是,可以通过成本差而不是通过计算更昂贵的梯度来数字诊断贫瘠的高原。更广泛地说,我们的工作表明,量子力学排除了某些成本景观(否则在数学上可能是可能的),因此从量子基础的角度来看,我们的结果很有趣。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
关于参数化量子电路(PQC)的成本景观知之甚少。然而,PQC被用于量子神经网络和变异量子算法中,这可能允许近期量子优势。此类应用需要良好的优化器来培训PQC。最近的作品集中在专门针对PQC量身定制的量子意识优化器上。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析上证明了PQC的两个结果:(1)我们在PQC中发现了指数较大的对称性,在成本景观中产生了最小值的呈指数较大的变性。或者,这可以作为相关超参数空间体积的指数减少。 (2)我们研究了噪声下对称性的弹性,并表明,尽管它在Unital噪声下是保守的,但非阴道通道可以打破这些对称性并提高最小值的变性,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小跳跃(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,在存在与当前硬件相当的水平上,SYMH在存在非阴性噪声的情况下提高了整体优化器性能。总体而言,这项工作从局部门转换中得出了大规模电路对称性,并使用它们来构建一种噪声吸引的优化方法。
translated by 谷歌翻译