Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.
translated by 谷歌翻译
我们研究了量子多体系统的哈密顿量的参数的问题,鉴于对系统的访问有限。在这项工作中,我们基于最近通过衍生估计进行哈密顿学习的方法。我们提出了一项协议,以改善先前作品的缩放依赖性,尤其是在与哈密顿式结构有关的参数方面(例如,其locality $ k $)。此外,通过在我们的协议的性能上得出精确的界限,我们能够在我们的学习协议中为高参数的理论上最佳设置提供精确的数值处方,例如最大进化时间(当统一动力学学习时)或最低温度(当与吉布斯国家学习时)。多亏了这些改进,我们的协议对于大型问题很实际:我们通过对80克系统的协议进行数值模拟来证明这一点。
translated by 谷歌翻译
作为量子优势的应用,对动态模拟和量子机学习(QML)的关注很大,而使用QML来增强动态模拟的可能性尚未得到彻底研究。在这里,我们开发了一个框架,用于使用QML方法模拟近期量子硬件上的量子动力学。我们使用概括范围,即机器学习模型在看不见的数据上遇到的错误,以严格分析此框架内算法的训练数据要求。这提供了一种保证,就量子和数据要求而言,我们的算法是资源有效的。我们的数字具有问题大小的有效缩放,我们模拟了IBMQ-Bogota上的Trotterization的20倍。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
变形量子算法(VQAS)可以是噪声中间级量子(NISQ)计算机上的量子优势的路径。自然问题是NISQ设备的噪声是否对VQA性能的基本限制。我们严格证明对嘈杂的VQAS进行严重限制,因为噪音导致训练景观具有贫瘠高原(即消失梯度)。具体而言,对于考虑的本地Pauli噪声,我们证明梯度在Qubits $ N $的数量中呈指数呈指数增长,如果Ansatz的深度以$ N $线性增长。这些噪声诱导的贫瘠强韧(NIBPS)在概念上不同于无辐射贫瘠强度,其与随机参数初始化相关联。我们的结果是为通用Ansatz制定的,该通用ansatz包括量子交替运算符ANSATZ和酉耦合簇Ansatz等特殊情况。对于前者来说,我们的数值启发式展示了用于现实硬件噪声模型的NIBP现象。
translated by 谷歌翻译
已经提出了一些用于量子神经网络(QNN)的体系结构,目的是有效地执行机器学习任务。对于特定的QNN结构,迫切需要进行严格的缩放结果,以了解哪种(如果有的话)可以大规模训练。在这里,我们为最近提出的架构分析了梯度缩放(以及训练性),该体系结构称为耗散QNNS(DQNNS),其中每层的输入量子位在该图层的输出处丢弃。我们发现DQNNS可以表现出贫瘠的高原,即在量子数量中呈指数级消失的梯度。此外,我们在不同条件下(例如不同的成本函数和电路深度)的DQNN梯度的缩放范围提供定量界限,并表明并非总是可以保证可训练性。
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译
通过磁共振成像(MRI)评估肿瘤负担对于评估胶质母细胞瘤的治疗反应至关重要。由于疾病的高异质性和复杂性,该评估的性能很复杂,并且与高变异性相关。在这项工作中,我们解决了这个问题,并提出了一条深度学习管道,用于对胶质母细胞瘤患者进行全自动的端到端分析。我们的方法同时确定了肿瘤的子区域,包括第一步的肿瘤,周围肿瘤和手术腔,然后计算出遵循神经符号学(RANO)标准的当前响应评估的体积和双相测量。此外,我们引入了严格的手动注释过程,其随后是人类专家描绘肿瘤子区域的,并捕获其分割的信心,后来在训练深度学习模型时被使用。我们广泛的实验研究的结果超过了760次术前和504例从公共数据库获得的神经胶质瘤后患者(2021 - 2020年在19个地点获得)和临床治疗试验(47和69个地点,可用于公共数据库(在19个地点获得)(47和69个地点)术前/术后患者,2009-2011)并以彻底的定量,定性和统计分析进行了备份,表明我们的管道在手动描述时间的一部分中对术前和术后MRI进行了准确的分割(最高20比人更快。二维和体积测量与专家放射科医生非常吻合,我们表明RANO测量并不总是足以量化肿瘤负担。
translated by 谷歌翻译