先进的制造技术使生产材料具有最先进的性质。然而,在许多情况下,这些技术的物理学模型的发展落后于实验室的使用。这意味着设计和运行实验在很大程度上通过试验和错误进行。这是次优,因为实验是成本 - ,时间和劳动密集型的。在这项工作中,我们提出了一种机器学习框架,差异属性分类(DPC),使实验者能够利用机器学习的无与伦比的模式匹配能力来追求数据驱动的实验设计。 DPC采用两种可能的实验参数集,并输出预测,其将产生具有由操作员指定的更可望的属性的材料。我们展示了DPC对AA7075管制造工艺和机械性能数据的成功,使用剪切辅助加工和挤出(形状),固相处理技术。我们表明,通过重点关注多个候选实验参数之间的选择,我们可以重新预测从处理参数预测材料属性的具有挑战性的回归任务,进入哪个机器学习模型可以实现良好性能的分类任务。
translated by 谷歌翻译
已经提出了多种对抗性攻击,并使用图像和音频数据进行了探索。众所周知,当攻击者可以直接操纵模型的输入时,这些攻击很容易生成,但是在现实世界中实施更加困难。在本文中,我们提出了通用的,对通用时间序列数据的通用时间不变攻击,以便该攻击具有主要由原始数据中存在的频率组成的频谱。攻击的通用性使其快速,易于实现,因为不需要将其添加到输入中,而时间不变性对于现实世界部署很有用。此外,频率约束确保攻击可以承受过滤。我们证明了攻击在两个不同领域的有效性,即语音识别和意外的辐射排放,并表明该攻击对共同的转换和能力防御管道是有力的。
translated by 谷歌翻译
自主驾驶的当代深度学习对象检测方法通常会假定前缀类别的共同交通参与者,例如行人和汽车。大多数现有的探测器无法检测到罕见的物体和拐角案例(例如,越过街道的狗),这可能会导致某些情况下发生严重的事故,从而使真实世界应用可靠的自动驾驶不确定。阻碍了真正可靠的自动驾驶系统发展的主要原因是缺乏评估对象探测器在角案例上的性能的公共数据集。因此,我们介绍了一个名为CODA的具有挑战性的数据集,该数据集揭示了基于视力的检测器的关键问题。该数据集由1500个精心选择的现实世界驾驶场景组成,每个场景平均包含四个对象级角案例(平均),涵盖30多个对象类别。在CODA上,在大型自动驾驶数据集中训练的标准对象探测器的性能显着下降到3月的12.8%。此外,我们试验了最新的开放世界对象检测器,发现它也无法可靠地识别尾声中的新对象,这表明对自主驾驶的强大感知系统可能远离触及。我们希望我们的CODA数据集有助于对现实世界自动驾驶的可靠检测进行进一步的研究。我们的数据集将在https://coda-dataset.github.io上发布。
translated by 谷歌翻译
我们考虑在具有多个可用的多个辅助来源的主要兴趣样本中最佳决策问题。感兴趣的结果是有限的,因为它仅在主要样本中观察到。实际上,这种多个数据源可能属于异质研究,因此不能直接组合。本文提出了一种新的框架来处理异构研究,并通过新的校准最佳决策(CODA)方法同时解决有限的结果,通过利用多种数据来源的常见中间结果来解决。具体地,CODA允许跨不同样品的基线协变量具有均匀或异质的分布。在温和和可测试的假设下,不同样本中的中间结果的条件方法等于基线协变量和治疗信息,我们表明,条件平均结果的提议CODA估计是渐近正常的和更有效的,而不是使用主要样品。此外,由于速率双重稳健性,可以使用简单的插件方法轻松获得CODA估计器的方差。对模拟数据集的广泛实验显示了使用CoDa的经验有效性和提高效率,然后是与来自Eicu的辅助数据的主要样本是MIMIC-III数据集的真实应用程序。
translated by 谷歌翻译