用于对象检测的注释边界框很昂贵,耗时且容易出错。在这项工作中,我们提出了一个基于DITR的框架,该框架旨在在部分注释的密集场景数据集中明确完成丢失的注释。这减少了注释场景中的每个对象实例,从而降低注释成本。完成DETR解码器中的对象查询,并使用图像中对象的补丁信息。结合匹配损失,它可以有效地找到与输入补丁相似的对象并完成丢失的注释。我们表明,我们的框架优于最先进的方法,例如软采样和公正的老师,同时可以与这些方法一起使用以进一步提高其性能。我们的框架对下游对象探测器的选择也不可知。我们显示了多个流行探测器的性能改进,例如在多个密集的场景数据集中更快的R-CNN,CASCADE R-CNN,CENTERNET2和可变形的DETR。
translated by 谷歌翻译
大多数现有的作品在少数拍摄对象检测(FSOD)上的工作重点是从类似域中进行预训练和几乎没有弹出的学习数据集的设置。但是,在多个域中,很少有射击算法很重要。因此,评估需要反映广泛的应用。我们提出了一个多域数少数对象检测(MOFSOD)基准,该基准由来自各个域的10个数据集组成,以评估FSOD算法。我们全面分析了冷冻层,不同的体系结构和不同的预训练数据集对FSOD性能的影响。我们的经验结果表明,以前的作品中尚未探索过的几个关键因素:1)与以前的信念相反,在多域基准测试中,微调(FT)是FSOD的强大基线,在PAR上表现或更好最先进的(SOTA)算法; 2)利用FT作为基线使我们能够探索多个体系结构,我们发现它们对下游的几杆任务产生重大影响,即使具有类似的训练性能; 3)通过取消预训练和几乎没有学习的学习,MOFSOD使我们能够探索不同的预训练数据集的影响,并且正确的选择可以显着提高下游任务的性能。基于这些发现,我们列出了可能提高FSOD性能的调查途径,并对现有算法进行了两次简单修改,这些算法导致MOFSOD基准上的SOTA性能。该代码可在https://github.com/amazon-research/few-shot-object-detection-benchmark上获得。
translated by 谷歌翻译
最近无监督的表示学习方法已经通过学习表示不变的数据增强,例如随机裁剪和彩色抖动等数据增强来生效。然而,如果依赖于数据增强的特征,例如,位置或色敏,则这种不变性可能对下游任务有害。这不是一个不监督学习的问题;我们发现即使在监督学习中也会发生这种情况,因为它还学会预测实例所有增强样本的相同标签。为避免此类失败并获得更广泛的表示,我们建议优化辅助自我监督损失,创建的AGESELF,了解两个随机增强样本之间的增强参数(例如,裁剪位置,颜色调整强度)的差异。我们的直觉是,Augelf鼓励在学习的陈述中保留增强信息,这可能有利于其可转让性。此外,Augself可以很容易地纳入最近的最先进的表示学习方法,其额外的培训成本可忽略不计。广泛的实验表明,我们的简单想法一直在各种转移学习情景中始终如一地提高了由监督和无监督方法所学到的表示的可转移性。代码可在https://github.com/hankook/augsfir。
translated by 谷歌翻译
Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low-and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.
translated by 谷歌翻译
The problem of detecting whether a test sample is from in-distribution (i.e., training distribution by a classifier) or out-of-distribution sufficiently different from it arises in many real-world machine learning applications. However, the state-of-art deep neural networks are known to be highly overconfident in their predictions, i.e., do not distinguish in-and out-of-distributions. Recently, to handle this issue, several threshold-based detectors have been proposed given pre-trained neural classifiers. However, the performance of prior works highly depends on how to train the classifiers since they only focus on improving inference procedures. In this paper, we develop a novel training method for classifiers so that such inference algorithms can work better. In particular, we suggest two additional terms added to the original loss (e.g., cross entropy). The first one forces samples from out-of-distribution less confident by the classifier and the second one is for (implicitly) generating most effective training samples for the first one. In essence, our method jointly trains both classification and generative neural networks for out-of-distribution. We demonstrate its effectiveness using deep convolutional neural networks on various popular image datasets.
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
Cellular automata (CA) captivate researchers due to teh emergent, complex individualized behavior that simple global rules of interaction enact. Recent advances in the field have combined CA with convolutional neural networks to achieve self-regenerating images. This new branch of CA is called neural cellular automata [1]. The goal of this project is to use the idea of idea of neural cellular automata to grow prediction machines. We place many different convolutional neural networks in a grid. Each conv net cell outputs a prediction of what the next state will be, and minimizes predictive error. Cells received their neighbors' colors and fitnesses as input. Each cell's fitness score described how accurate its predictions were. Cells could also move to explore their environment and some stochasticity was applied to movement.
translated by 谷歌翻译
There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
In this paper, we learn a diffusion model to generate 3D data on a scene-scale. Specifically, our model crafts a 3D scene consisting of multiple objects, while recent diffusion research has focused on a single object. To realize our goal, we represent a scene with discrete class labels, i.e., categorical distribution, to assign multiple objects into semantic categories. Thus, we extend discrete diffusion models to learn scene-scale categorical distributions. In addition, we validate that a latent diffusion model can reduce computation costs for training and deploying. To the best of our knowledge, our work is the first to apply discrete and latent diffusion for 3D categorical data on a scene-scale. We further propose to perform semantic scene completion (SSC) by learning a conditional distribution using our diffusion model, where the condition is a partial observation in a sparse point cloud. In experiments, we empirically show that our diffusion models not only generate reasonable scenes, but also perform the scene completion task better than a discriminative model. Our code and models are available at https://github.com/zoomin-lee/scene-scale-diffusion
translated by 谷歌翻译