The past few years have witnessed the prevalence of self-supervised representation learning within the language and 2D vision communities. However, such advancements have not been fully migrated to the community of 3D point cloud learning. Different from previous pre-training pipelines for 3D point clouds that generally fall into the scope of either generative modeling or contrastive learning, in this paper, we investigate a translative pre-training paradigm, namely PointVST, driven by a novel self-supervised pretext task of cross-modal translation from an input 3D object point cloud to its diverse forms of 2D rendered images (e.g., silhouette, depth, contour). Specifically, we begin with deducing view-conditioned point-wise embeddings via the insertion of the viewpoint indicator, and then adaptively aggregate a view-specific global codeword, which is further fed into the subsequent 2D convolutional translation heads for image generation. We conduct extensive experiments on common task scenarios of 3D shape analysis, where our PointVST shows consistent and prominent performance superiority over current state-of-the-art methods under diverse evaluation protocols. Our code will be made publicly available.
translated by 谷歌翻译
Deep learning-based 3D object detectors have made significant progress in recent years and have been deployed in a wide range of applications. It is crucial to understand the robustness of detectors against adversarial attacks when employing detectors in security-critical applications. In this paper, we make the first attempt to conduct a thorough evaluation and analysis of the robustness of 3D detectors under adversarial attacks. Specifically, we first extend three kinds of adversarial attacks to the 3D object detection task to benchmark the robustness of state-of-the-art 3D object detectors against attacks on KITTI and Waymo datasets, subsequently followed by the analysis of the relationship between robustness and properties of detectors. Then, we explore the transferability of cross-model, cross-task, and cross-data attacks. We finally conduct comprehensive experiments of defense for 3D detectors, demonstrating that simple transformations like flipping are of little help in improving robustness when the strategy of transformation imposed on input point cloud data is exposed to attackers. Our findings will facilitate investigations in understanding and defending the adversarial attacks against 3D object detectors to advance this field.
translated by 谷歌翻译
Point clouds are characterized by irregularity and unstructuredness, which pose challenges in efficient data exploitation and discriminative feature extraction. In this paper, we present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology as a completely regular 2D point geometry image (PGI) structure, in which coordinates of spatial points are captured in colors of image pixels. \mr{Intuitively, Flattening-Net implicitly approximates a locally smooth 3D-to-2D surface flattening process while effectively preserving neighborhood consistency.} \mr{As a generic representation modality, PGI inherently encodes the intrinsic property of the underlying manifold structure and facilitates surface-style point feature aggregation.} To demonstrate its potential, we construct a unified learning framework directly operating on PGIs to achieve \mr{diverse types of high-level and low-level} downstream applications driven by specific task networks, including classification, segmentation, reconstruction, and upsampling. Extensive experiments demonstrate that our methods perform favorably against the current state-of-the-art competitors. We will make the code and data publicly available at https://github.com/keeganhk/Flattening-Net.
translated by 谷歌翻译
Directly training a document-to-document (Doc2Doc) neural machine translation (NMT) via Transformer from scratch, especially on small datasets usually fails to converge. Our dedicated probing tasks show that 1) both the absolute position and relative position information gets gradually weakened or even vanished once it reaches the upper encoder layers, and 2) the vanishing of absolute position information in encoder output causes the training failure of Doc2Doc NMT. To alleviate this problem, we propose a position-aware Transformer (P-Transformer) to enhance both the absolute and relative position information in both self-attention and cross-attention. Specifically, we integrate absolute positional information, i.e., position embeddings, into the query-key pairs both in self-attention and cross-attention through a simple yet effective addition operation. Moreover, we also integrate relative position encoding in self-attention. The proposed P-Transformer utilizes sinusoidal position encoding and does not require any task-specified position embedding, segment embedding, or attention mechanism. Through the above methods, we build a Doc2Doc NMT model with P-Transformer, which ingests the source document and completely generates the target document in a sequence-to-sequence (seq2seq) way. In addition, P-Transformer can be applied to seq2seq-based document-to-sentence (Doc2Sent) and sentence-to-sentence (Sent2Sent) translation. Extensive experimental results of Doc2Doc NMT show that P-Transformer significantly outperforms strong baselines on widely-used 9 document-level datasets in 7 language pairs, covering small-, middle-, and large-scales, and achieves a new state-of-the-art. Experimentation on discourse phenomena shows that our Doc2Doc NMT models improve the translation quality in both BLEU and discourse coherence. We make our code available on Github.
translated by 谷歌翻译
Speech-to-speech translation directly translates a speech utterance to another between different languages, and has great potential in tasks such as simultaneous interpretation. State-of-art models usually contains an auxiliary module for phoneme sequences prediction, and this requires textual annotation of the training dataset. We propose a direct speech-to-speech translation model which can be trained without any textual annotation or content information. Instead of introducing an auxiliary phoneme prediction task in the model, we propose to use bottleneck features as intermediate training objectives for our model to ensure the translation performance of the system. Experiments on Mandarin-Cantonese speech translation demonstrate the feasibility of the proposed approach and the performance can match a cascaded system with respect of translation and synthesis qualities.
translated by 谷歌翻译
Point clouds captured by scanning devices are often incomplete due to occlusion. Point cloud completion aims to predict the complete shape based on its partial input. Existing methods can be classified into supervised and unsupervised methods. However, both of them require a large number of 3D complete point clouds, which are difficult to capture. In this paper, we propose Cross-PCC, an unsupervised point cloud completion method without requiring any 3D complete point clouds. We only utilize 2D images of the complete objects, which are easier to capture than 3D complete and clean point clouds. Specifically, to take advantage of the complementary information from 2D images, we use a single-view RGB image to extract 2D features and design a fusion module to fuse the 2D and 3D features extracted from the partial point cloud. To guide the shape of predicted point clouds, we project the predicted points of the object to the 2D plane and use the foreground pixels of its silhouette maps to constrain the position of the projected points. To reduce the outliers of the predicted point clouds, we propose a view calibrator to move the points projected to the background into the foreground by the single-view silhouette image. To the best of our knowledge, our approach is the first point cloud completion method that does not require any 3D supervision. The experimental results of our method are superior to those of the state-of-the-art unsupervised methods by a large margin. Moreover, compared to some supervised methods, our method achieves similar performance. We will make the source code publicly available at https://github.com/ltwu6/cross-pcc.
translated by 谷歌翻译
Point cloud completion, as the upstream procedure of 3D recognition and segmentation, has become an essential part of many tasks such as navigation and scene understanding. While various point cloud completion models have demonstrated their powerful capabilities, their robustness against adversarial attacks, which have been proven to be fatally malicious towards deep neural networks, remains unknown. In addition, existing attack approaches towards point cloud classifiers cannot be applied to the completion models due to different output forms and attack purposes. In order to evaluate the robustness of the completion models, we propose PointCA, the first adversarial attack against 3D point cloud completion models. PointCA can generate adversarial point clouds that maintain high similarity with the original ones, while being completed as another object with totally different semantic information. Specifically, we minimize the representation discrepancy between the adversarial example and the target point set to jointly explore the adversarial point clouds in the geometry space and the feature space. Furthermore, to launch a stealthier attack, we innovatively employ the neighbourhood density information to tailor the perturbation constraint, leading to geometry-aware and distribution-adaptive modifications for each point. Extensive experiments against different premier point cloud completion networks show that PointCA can cause a performance degradation from 77.9% to 16.7%, with the structure chamfer distance kept below 0.01. We conclude that existing completion models are severely vulnerable to adversarial examples, and state-of-the-art defenses for point cloud classification will be partially invalid when applied to incomplete and uneven point cloud data.
translated by 谷歌翻译
经常在现实生活中观察到签名网络,并具有与每个边缘相关的其他符号信息,但是在现有网络模型中,这些信息在很大程度上被忽略了。本文开发了一个统一的嵌入模型,用于签名网络,以解散交织在一起的平衡结构和异常效应,这可以极大地促进下游分析,包括社区检测,异常检测和网络推断。所提出的模型通过低等级加稀疏基质分解捕获平衡结构和异常效应,这些分解是通过正则配方共同估算的。它的理论保证是根据渐近一致性和用于网络嵌入,社区检测和异常检测的有限样本概率范围的。还通过在合成网络和国际关系网络上进行广泛的数值实验来证明所提出的嵌入模型的优势。
translated by 谷歌翻译
作为3D对象的两个基本表示方式,2D多视图图像和3D点云反映了来自视觉外观和几何结构各个方面的形状信息。与基于深度学习的2D多视图图像建模不同,该模型在各种3D形状分析任务中展示了领先的性能,基于3D点云的几何建模仍然遭受学习能力不足。在本文中,我们创新地构建了一个统一的跨模式知识转移框架,该框架将2D图像的歧视性视觉描述器提炼成3D点云的几何描述符。从技术上讲,在经典的教师学习范式下,我们提出了多视觉愿景到几何的蒸馏,由深入的2D图像编码器作为老师和深层的3D点云编码器组成。为了实现异质特征对齐,我们进一步提出了可见性感知的特征投影,通过该投影可以通过该投影将每个点嵌入可以汇总到多视图几何描述符中。对3D形状分类,部分分割和无监督学习的广泛实验验证了我们方法的优势。我们将公开提供代码和数据。
translated by 谷歌翻译
由遮挡,信号丢失或手动注释错误引起的3D边界框的地面真相注释的固有歧义可能会使训练过程中的深3D对象检测器混淆,从而使检测准确性恶化。但是,现有方法在某种程度上忽略了此类问题,并将标签视为确定性。在本文中,我们提出了GLENET,这是一个从条件变异自动编码器改编的生成标签不确定性估计框架,以建模典型的3D对象与其潜在的潜在基边界框之间具有潜在变量的一对一关系。 Glenet产生的标签不确定性是一个插件模块,可以方便地集成到现有的深3D检测器中,以构建概率检测器并监督本地化不确定性的学习。此外,我们提出了概率探测器中的不确定性质量估计量架构,以指导对IOU分支的培训,并预测了本地化不确定性。我们将提出的方法纳入各种流行的3D检测器中,并观察到它们的性能显着提高到Waymo Open DataSet和Kitti数据集中的当前最新技术。
translated by 谷歌翻译