An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
The weakly supervised instance segmentation is a challenging task. The existing methods typically use bounding boxes as supervision and optimize the network with a regularization loss term such as pairwise color affinity loss for instance segmentation. Through systematic analysis, we found that the commonly used pairwise affinity loss has two limitations: (1) it works with color affinity but leads to inferior performance with other modalities such as depth gradient, (2)the original affinity loss does not prevent trivial predictions as intended but actually accelerates this process due to the affinity loss term being symmetric. To overcome these two limitations, in this paper, we propose a novel asymmetric affinity loss which provides the penalty against the trivial prediction and generalizes well with affinity loss from different modalities. With the proposed asymmetric affinity loss, our method outperforms the state-of-the-art methods on the Cityscapes dataset and outperforms our baseline method by 3.5% in mask AP.
translated by 谷歌翻译
This report describes the winning solution to the Robust Vision Challenge (RVC) semantic segmentation track at ECCV 2022. Our method adopts the FAN-B-Hybrid model as the encoder and uses SegFormer as the segmentation framework. The model is trained on a composite dataset consisting of images from 9 datasets (ADE20K, Cityscapes, Mapillary Vistas, ScanNet, VIPER, WildDash 2, IDD, BDD, and COCO) with a simple dataset balancing strategy. All the original labels are projected to a 256-class unified label space, and the model is trained using a cross-entropy loss. Without significant hyperparameter tuning or any specific loss weighting, our solution ranks the first place on all the testing semantic segmentation benchmarks from multiple domains (ADE20K, Cityscapes, Mapillary Vistas, ScanNet, VIPER, and WildDash 2). The proposed method can serve as a strong baseline for the multi-domain segmentation task and benefit future works. Code will be available at https://github.com/lambert-x/RVC_Segmentation.
translated by 谷歌翻译
本文研究了从预先训练的模型,尤其是蒙面自动编码器中提取知识的潜力。我们的方法很简单:除了优化掩盖输入的像素重建损失外,我们还将教师模型的中间特征图与学生模型的中间特征图之间的距离最小化。此设计导致一个计算高效的知识蒸馏框架,给定1)仅使用一个少量可见的补丁子集,2)(笨拙的)教师模型仅需要部分执行,\ ie,\ ie,在前几个中,向前传播输入层,用于获得中间特征图。与直接蒸馏微型模型相比,提炼预训练的模型显着改善了下游性能。例如,通过将知识从MAE预先训练的VIT-L提炼为VIT-B,我们的方法可实现84.0%的Imagenet Top-1精度,表现优于直接将微型VIT-L蒸馏的基线,降低1.2%。更有趣的是,我们的方法即使具有极高的掩盖率也可以从教师模型中进行鲁棒性蒸馏:例如,在蒸馏过程中仅可见十个斑块,我们的VIT-B具有竞争力的前1个Imagenet精度为83.6%,在95%的掩盖率中,只有十个斑块。 ;令人惊讶的是,它仍然可以通过仅四个可见斑(98%的掩盖率)积极训练来确保82.4%的Top-1 Imagenet精度。代码和模型可在https://github.com/ucsc-vlaa/dmae上公开获得。
translated by 谷歌翻译
半监控视频动作识别倾向于使深神经网络能够实现显着性能,即使具有非常有限的标记数据。然而,现有方法主要从当前的基于图像的方法转移(例如,FixMatch)。不具体利用时间动态和固有的多模式属性,它们的结果可能是次优。为了更好地利用视频中的编码的时间信息,我们将时间梯度引入了本文中的更多细小特征提取的额外模态。具体而言,我们的方法明确地蒸馏从时间梯度(TG)的细粒度运动表示,并施加不同方式的一致性(即RGB和TG)。在推理期间,没有额外的计算或参数,在没有额外的计算或参数的情况下显着提高了半监督动作识别的性能。我们的方法在若干典型的半监督设置(即标记数据的不同比率)下实现三个视频动作识别基准(即动态-400,UCF-101和HMDB-51)的最先进的性能。
translated by 谷歌翻译
批准(BN)均匀地基于一批图像的统计数据均匀地移动并缩放激活。但是,背景像素的强度分布通常主导了BN统计数据,因为背景占整个图像的很大比例。本文着重于通过前景像素的强度分布增强BN,这对于图像分割至关重要。我们提出了一种新的归一化策略,称为分类归一化(结合型),以根据分类统计数据使激活归一化。分类统计数据是通过动态调节属于前景的图像中的特定区域而获得的。结合型在从不同域获得的五个公共数据集展示了精确和稳健的分割结果,涵盖了复杂和可变的数据分布。这归因于结合体从医疗数据的多个领域(机构)捕获域不变的信息的能力。代码可从https://github.com/lambert-x/catenorm获得。
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
In this work, we tackle two vital tasks in automated driving systems, i.e., driver intent prediction and risk object identification from egocentric images. Mainly, we investigate the question: what would be good road scene-level representations for these two tasks? We contend that a scene-level representation must capture higher-level semantic and geometric representations of traffic scenes around ego-vehicle while performing actions to their destinations. To this end, we introduce the representation of semantic regions, which are areas where ego-vehicles visit while taking an afforded action (e.g., left-turn at 4-way intersections). We propose to learn scene-level representations via a novel semantic region prediction task and an automatic semantic region labeling algorithm. Extensive evaluations are conducted on the HDD and nuScenes datasets, and the learned representations lead to state-of-the-art performance for driver intention prediction and risk object identification.
translated by 谷歌翻译
New architecture GPUs like A100 are now equipped with multi-instance GPU (MIG) technology, which allows the GPU to be partitioned into multiple small, isolated instances. This technology provides more flexibility for users to support both deep learning training and inference workloads, but efficiently utilizing it can still be challenging. The vision of this paper is to provide a more comprehensive and practical benchmark study for MIG in order to eliminate the need for tedious manual benchmarking and tuning efforts. To achieve this vision, the paper presents MIGPerf, an open-source tool that streamlines the benchmark study for MIG. Using MIGPerf, the authors conduct a series of experiments, including deep learning training and inference characterization on MIG, GPU sharing characterization, and framework compatibility with MIG. The results of these experiments provide new insights and guidance for users to effectively employ MIG, and lay the foundation for further research on the orchestration of hybrid training and inference workloads on MIGs. The code and results are released on https://github.com/MLSysOps/MIGProfiler. This work is still in progress and more results will be published soon.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译