电子健康记录(EHR)可获得的丰富纵向个体水平数据可用于检查治疗效果异质性。但是,使用EHR数据估算治疗效果提出了几个挑战,包括时变的混杂,重复和时间不一致的协变量测量,治疗分配和结果以及由于辍学导致的损失。在这里,我们开发了纵向数据(SDLD)算法的亚组发现,该算法是一种基于树的算法,用于使用纵向相互作用树算法结合使用纵向相互作用的一般数据驱动的方法,与纵向驱动的方法与纵向驱动的方法结合使用纵向相互作用,以发现具有异质治疗效果的亚组,并进行纵向研究。目标最大似然估计。我们将算法应用于EHR数据,以发现患有人免疫缺陷病毒(HIV)的人群的亚组,他们在接受非Dolutegravir抗逆转录病毒疗法(ART)接受非Dolutegravir抗逆转录病毒疗法(艺术)时的体重增加风险较高。
translated by 谷歌翻译
This paper expounds the design and control of a new Variable Stiffness Series Elastic Actuator (VSSEA). It is established by employing a modular mechanical design approach that allows us to effectively optimise the stiffness modulation characteristics and power density of the actuator. The proposed VSSEA possesses the following features: i) no limitation in the work-range of output link, ii) a wide range of stiffness modulation (~20Nm/rad to ~1KNm/rad), iii) low-energy-cost stiffness modulation at equilibrium and non-equilibrium positions, iv) compact design and high torque density (~36Nm/kg), and v) high-speed stiffness modulation (~3000Nm/rad/s). Such features can help boost the safety and performance of many advanced robotic systems, e.g., a cobot that physically interacts with unstructured environments and an exoskeleton that provides physical assistance to human users. These features can also enable us to utilise variable stiffness property to attain various regulation and trajectory tracking control tasks only by employing conventional controllers, eliminating the need for synthesising complex motion control systems in compliant actuation. To this end, it is experimentally demonstrated that the proposed VSSEA is capable of precisely tracking desired position and force control references through the use of conventional Proportional-Integral-Derivative (PID) controllers.
translated by 谷歌翻译
负责任的AI被广泛认为是我们时代最大的科学挑战之一,也是释放AI市场并增加采用率的关键。为了应对负责任的AI挑战,最近已经发布了许多AI伦理原则框架,AI系统应该符合这些框架。但是,没有进一步的最佳实践指导,从业者除了真实性之外没有什么。同样,在算法级别而不是系统级的算法上进行了重大努力,主要集中于数学无关的道德原则(例如隐私和公平)的一部分。然而,道德问题在开发生命周期的任何步骤中都可能发生,从而超过AI算法和模型以外的系统的许多AI,非AI和数据组件。为了从系统的角度操作负责任的AI,在本文中,我们采用了一种面向模式的方法,并根据系统的多媒体文献综述(MLR)的结果提出了负责任的AI模式目录。与其呆在道德原则层面或算法层面上,我们专注于AI系统利益相关者可以在实践中采取的模式,以确保开发的AI系统在整个治理和工程生命周期中负责。负责的AI模式编目将模式分为三组:多层次治理模式,可信赖的过程模式和负责任的逐设计产品模式。这些模式为利益相关者实施负责任的AI提供了系统性和可行的指导。
translated by 谷歌翻译
许多微体系式优化为深度神经网络解锁了巨大的处理能力,从而促进了AI革命。随着这种优化的精疲力尽,现代AI的增长现在是通过培训系统的性能,尤其是其数据流动的。我们没有专注于单个加速器,而是研究了全系统规模的大规模培训的数据移动特征。基于我们的工作量分析,我们设计了HammingMesh,这是一种新颖的网络拓扑,以低成本提供高的带宽,并具有很高的工作计划灵活性。具体而言,HammingMesh可以支持具有两个并行性的两个维度的深度学习培训工作的完整带宽和隔离。此外,它还为通用流量的高全球带宽提供支持。因此,HammingMesh将为未来的大规模深度学习系统供电,并具有极端的带宽要求。
translated by 谷歌翻译
我们将人机协作问题解决的问题视为一项计划任务,再加上自然语言交流。我们的框架由三个组成部分组成 - 一种自然语言引擎,将语言话语解析为正式代表,反之亦然,这是一个概念学习者,该概念学习者基于与用户的有限互动来诱导计划的广义概念,以及解决方案的HTN规划师,以解决该计划。基于人类互动的任务。我们说明了该框架通过在基于Minecraft的Blocksworld域中的协作构建任务中证明协作问题解决的关键挑战的能力。随附的演示视频可在https://youtu.be/q1pwe4aahf0上获得。
translated by 谷歌翻译
目的:通过密集连接的深度学习重建框架来改善加速的MRI重建。材料和方法:通过应用三个架构修改来修改级联的深度学习重建框架(基线模型):级联输入和输出之间的输入级级密集连接,改进的深度学习子网络和随后的SKIP连接之间的改进深度学习网络。进行了一项消融研究,其中在NYU FastMRI Neuro数据集上训练了五个模型配置,并在四倍和八倍的加速度上结合了端到端方案。通过比较其各自的结构相似性指数度量(SSIM),归一化平方误差(NMSE)和峰信号与噪声比(PSNR)来评估训练的模型。结果:提出的密集互连的残留级联网络(DIRCN)利用了所有三种建议的修改,分别为四倍和八倍加速度获得了8%和11%的SSIM提高。对于八倍的加速度,与基线模型相比,该模型的NMSE降低了23%。在一项消融研究中,单个体系结构的修饰都通过分别减少SSIM和NMSE的四倍加速度减少了SSIM和NMSE,这都促进了这一改进。结论:所提出的架构修改允许对已经存在的级联框架进行简单调整,以进一步改善所得的重建。
translated by 谷歌翻译
用于移动操作的机器人平台需要满足许多对许多现实世界应用的两个矛盾要求:需要紧凑的基础才能通过混乱的室内环境导航,而支撑需要足够大以防止翻滚或小费,尤其是在快速操纵期间有效载荷或与环境有力互动的操作。本文提出了一种新颖的机器人设计,该设计通过多功能足迹来满足这两种要求。当操纵重物时,它可以将其足迹重新配置为狭窄的配置。此外,其三角形配置可通过防止支撑开关来在不平坦的地面上进行高精度任务。提出了一种模型预测控制策略,该策略统一计划和控制,以同时导航,重新配置和操纵。它将任务空间目标转换为新机器人的全身运动计划。提出的设计已通过硬件原型进行了广泛的测试。足迹重新配置几乎可以完全消除操纵引起的振动。控制策略在实验室实验和现实世界的施工任务中被证明有效。
translated by 谷歌翻译
尽管AI具有改变社会的巨大潜力,但人们对其行为能力和负责任地做出决定的能力存在严重的关注。最近发布了许多负责AI的道德法规,原则和准则。但是,这些原则是高级且难以实施的。同时,从算法的角度来看,已经将很多努力投入到负责人的AI中,但是它们仅限于一小部分伦理原则,可用于数学分析。负责的人工智能问题超出了数据和算法,并且经常在系统级交叉处,许多系统组件和整个软件工程生命周期。基于系统文献综述的结果,本文将一个缺失的元素确定为系统级指导 - 如何设计负责任的AI系统的体系结构。我们提供了一个设计模式的摘要,可以将其嵌入AI系统中作为产品功能,以促进负责任的设计。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译