The robustness of Text-to-SQL parsers against adversarial perturbations plays a crucial role in delivering highly reliable applications. Previous studies along this line primarily focused on perturbations in the natural language question side, neglecting the variability of tables. Motivated by this, we propose the Adversarial Table Perturbation (ATP) as a new attacking paradigm to measure the robustness of Text-to-SQL models. Following this proposition, we curate ADVETA, the first robustness evaluation benchmark featuring natural and realistic ATPs. All tested state-of-the-art models experience dramatic performance drops on ADVETA, revealing models' vulnerability in real-world practices. To defend against ATP, we build a systematic adversarial training example generation framework tailored for better contextualization of tabular data. Experiments show that our approach not only brings the best robustness improvement against table-side perturbations but also substantially empowers models against NL-side perturbations. We release our benchmark and code at: https://github.com/microsoft/ContextualSP.
translated by 谷歌翻译
Marketing is an important mechanism to increase user engagement and improve platform revenue, and heterogeneous causal learning can help develop more effective strategies. Most decision-making problems in marketing can be formulated as resource allocation problems and have been studied for decades. Existing works usually divide the solution procedure into two fully decoupled stages, i.e., machine learning (ML) and operation research (OR) -- the first stage predicts the model parameters and they are fed to the optimization in the second stage. However, the error of the predicted parameters in ML cannot be respected and a series of complex mathematical operations in OR lead to the increased accumulative errors. Essentially, the improved precision on the prediction parameters may not have a positive correlation on the final solution due to the side-effect from the decoupled design. In this paper, we propose a novel approach for solving resource allocation problems to mitigate the side-effects. Our key intuition is that we introduce the decision factor to establish a bridge between ML and OR such that the solution can be directly obtained in OR by only performing the sorting or comparison operations on the decision factor. Furthermore, we design a customized loss function that can conduct direct heterogeneous causal learning on the decision factor, an unbiased estimation of which can be guaranteed when the loss converges. As a case study, we apply our approach to two crucial problems in marketing: the binary treatment assignment problem and the budget allocation problem with multiple treatments. Both large-scale simulations and online A/B Tests demonstrate that our approach achieves significant improvement compared with state-of-the-art.
translated by 谷歌翻译
We present a multi-view inverse rendering method for large-scale real-world indoor scenes that reconstructs global illumination and physically-reasonable SVBRDFs. Unlike previous representations, where the global illumination of large scenes is simplified as multiple environment maps, we propose a compact representation called Texture-based Lighting (TBL). It consists of 3D meshs and HDR textures, and efficiently models direct and infinite-bounce indirect lighting of the entire large scene. Based on TBL, we further propose a hybrid lighting representation with precomputed irradiance, which significantly improves the efficiency and alleviate the rendering noise in the material optimization. To physically disentangle the ambiguity between materials, we propose a three-stage material optimization strategy based on the priors of semantic segmentation and room segmentation. Extensive experiments show that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively, and enables physically-reasonable mixed-reality applications such as material editing, editable novel view synthesis and relighting. The project page is at https://lzleejean.github.io/TexIR.
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译
We propose an analysis in fair learning that preserves the utility of the data while reducing prediction disparities under the criteria of group sufficiency. We focus on the scenario where the data contains multiple or even many subgroups, each with limited number of samples. As a result, we present a principled method for learning a fair predictor for all subgroups via formulating it as a bilevel objective. Specifically, the subgroup specific predictors are learned in the lower-level through a small amount of data and the fair predictor. In the upper-level, the fair predictor is updated to be close to all subgroup specific predictors. We further prove that such a bilevel objective can effectively control the group sufficiency and generalization error. We evaluate the proposed framework on real-world datasets. Empirical evidence suggests the consistently improved fair predictions, as well as the comparable accuracy to the baselines.
translated by 谷歌翻译
从敏感数据中学习时,必须注意确保培训算法解决隐私问题。教师合奏或PATE的规范私人聚合通过通过投票机制汇总(可能分布的)教师模型集合的预测来计算输出标签。该机制增加了噪音,以获得有关教师培训数据的差异隐私保证。在这项工作中,我们观察到这种噪声的使用(使PATE预测随机)可以实现敏感信息的新形式。对于给定的输入,我们的对手利用这种随机性来提取基础教师提交的投票的高保真直方图。从这些直方图中,对手可以学习输入的敏感属性,例如种族,性别或年龄。尽管这次攻击并没有直接违反差异隐私保证,但它显然违反了隐私规范和期望,如果没有插入差异隐私的噪音,就根本不可能。实际上,违反直觉,随着我们添加更多噪音以提供更强的差异隐私,攻击变得更加容易。我们希望这鼓励未来的工作从整体上考虑隐私,而不是将差异隐私视为灵丹妙药。
translated by 谷歌翻译
为了获得下游图像信号过程(ISP)的高质量的原始图像,在本文中,我们提出了一个有效的本地乘法变压器,称为ELMFORMER,用于原始图像恢复。 Elmformer包含两个核心设计,尤其是针对原始属性是单渠道的原始图像。第一个设计是双向融合投影(BFP)模块,我们考虑了原始图像的颜色特征和单渠道的空间结构。第二个是我们提出了一个本地乘法自我注意力(L-MSA)方案,以有效地从当地空间传递信息到相关部分。 Elmformer可以有效地减少计算消耗,并在原始图像恢复任务上表现良好。通过这两种核心设计,Elmformer提高了最高的性能,并且与最先进的机构相比,原始DeNoising和原始Deblurring基准测试最低。广泛的实验证明了Elmformer的优势和概括能力。在SIDD基准测试中,我们的方法比基于ISP的方法具有更好的降解性能,这些方法需要大量的额外的SRGB培训图像。这些代码在https://github.com/leonmakise/elmformer上发布。
translated by 谷歌翻译
神经表面重建旨在基于多视图图像重建准确的3D表面。基于神经量的先前方法主要训练完全隐式的模型,它们需要单个场景的数小时培训。最近的努力探讨了明确的体积表示,该表示通过记住可学习的素网格中的重要信息,从而大大加快了优化过程。但是,这些基于体素的方法通常在重建细粒几何形状方面遇到困难。通过实证研究,我们发现高质量的表面重建取决于两个关键因素:构建相干形状的能力和颜色几何依赖性的精确建模。特别是,后者是准确重建细节的关键。受这些发现的启发,我们开发了Voxurf,这是一种基于体素的方法,用于有效,准确的神经表面重建,该方法由两个阶段组成:1)利用可学习的特征网格来构建颜色场并获得连贯的粗糙形状,并且2)使用双色网络来完善详细的几何形状,可捕获精确的颜色几何依赖性。我们进一步引入了层次几何特征,以启用跨体素的信息共享。我们的实验表明,Voxurf同时达到了高效率和高质量。在DTU基准测试中,与最先进的方法相比,Voxurf获得了更高的重建质量,训练的加速度为20倍。
translated by 谷歌翻译
非接触式粒子操纵(NPM)技术将人类的分析能力大大扩展到了微观和纳米量表,这反过来又大大促进了材料科学和生命科学的发展。尽管从机器人的角度来看,通过电力,磁性和光场取得了巨大的成功,但它仍然是劳动密集型操作,因为在早期准备阶段,专业人力援助以某种方式是强制性的。因此,出现运动颗粒的自动非接触夹捕获是值得的,特别是对于粒子样品罕见,脆弱或接触敏感的应用。利用最新的动态声场调节技术,尤其是通过从微尺度到亚中心尺度的声学操纵的巨大可扩展性,我们提出了一个自动化的非接触式微粒诱捕,该非接触式捕获具有超声梯级系统和显微镜系统和显微镜系统的移动微粒本文的视觉。据我们所知,这项工作的主要贡献是首次通过诉诸机器人方法来实现声学NPM场中完全自动化的微颗粒捕获。简而言之,通过参考其计算和生成的声学陷阱区域来观察并通过双眼微观视觉系统观察并预测粒子的移动状态。在这项工作中,非连接机器人最终效应器的手眼关系问题也解决了。实验证明了这项工作的有效性。
translated by 谷歌翻译
模拟/混合信号电路设计是整个芯片设计过程中最复杂,最耗时的阶段之一。由于芯片制造的各种过程,电压和温度(PVT)变化,模拟电路不可避免地会遭受性能降解。尽管在典型条件下自动化模拟电路设计方面已经有很多工作,但在探索在真实且不可预测的硅变化下探索可靠设计的研究有限。针对变化的自动模拟设计需要过度的计算和时间成本。为了应对挑战,我们提出了RobustanAlog,这是一个强大的电路设计框架,涉及优化过程中的变化信息。具体而言,不同变化下的电路优化被认为是一组任务。任务之间的相似之处是杠杆作用,并且可以缓解竞争以实现样本效率高的多任务培训。此外,Robustanalog根据每次迭代中当前的性能来修剪任务空间,从而导致进一步的模拟成本降低。这样,鲁棒可以迅速产生一组电路参数,这些电路参数满足各种变化的各种约束(例如增益,带宽,噪声...)。我们将Robustanalog与贝叶斯优化,进化算法和深层确定性策略梯度(DDPG)进行了比较,并证明Robustanalog可以将所需的优化时间显着减少14-30次。因此,我们的研究提供了一种处理各种真实硅条件的可行方法。
translated by 谷歌翻译