The processing and recognition of geoscience images have wide applications. Most of existing researches focus on understanding the high-quality geoscience images by assuming that all the images are clear. However, in many real-world cases, the geoscience images might contain occlusions during the image acquisition. This problem actually implies the image inpainting problem in computer vision and multimedia. To the best of our knowledge, all the existing image inpainting algorithms learn to repair the occluded regions for a better visualization quality, they are excellent for natural images but not good enough for geoscience images by ignoring the geoscience related tasks. This paper aims to repair the occluded regions for a better geoscience task performance with the advanced visualization quality simultaneously, without changing the current deployed deep learning based geoscience models. Because of the complex context of geoscience images, we propose a coarse-to-fine encoder-decoder network with coarse-to-fine adversarial context discriminators to reconstruct the occluded image regions. Due to the limited data of geoscience images, we use a MaskMix based data augmentation method to exploit more information from limited geoscience image data. The experimental results on three public geoscience datasets for remote sensing scene recognition, cross-view geolocation and semantic segmentation tasks respectively show the effectiveness and accuracy of the proposed method.
translated by 谷歌翻译
This paper studies the distribution estimation of contaminated data by the MoM-GAN method, which combines generative adversarial net (GAN) and median-of-mean (MoM) estimation. We use a deep neural network (DNN) with a ReLU activation function to model the generator and discriminator of the GAN. Theoretically, we derive a non-asymptotic error bound for the DNN-based MoM-GAN estimator measured by integral probability metrics with the $b$-smoothness H\"{o}lder class. The error bound decreases essentially as $n^{-b/p}\vee n^{-1/2}$, where $n$ and $p$ are the sample size and the dimension of input data. We give an algorithm for the MoM-GAN method and implement it through two real applications. The numerical results show that the MoM-GAN outperforms other competitive methods when dealing with contaminated data.
translated by 谷歌翻译
在本文中,我们考虑了使用$ \ ell_1 $ regularized logistic回归的方法来估算与高维iSing模型相关的图形的元学习问题,用于每个节点的邻域选择。我们的目标是在学习新任务中使用从辅助任务中学到的信息来降低其足够的样本复杂性。为此,我们提出了一种新颖的生成模型以及不当的估计方法。在我们的设置中,所有任务均为\ emph {相似}在其\ emph {Random}模型参数和支持中。通过将所有样品从辅助任务汇总到\ emph {不正确}估计一个参数向量,我们可以恢复假定的尺寸很小的真实支持联合,具有很高的概率,具有足够的样品复杂性为$ \ omega(1) $每任务,对于$ k = \ omega(d^3 \ log P)$具有$ p $节点和最大邻域大小$ d $的ISING型号的任务。然后,在对新任务的支持仅限于估计的支持联盟的支持下,我们证明,可以通过降低$ \ omega(d^3 \ log d)$的足够样品复杂性来获得新任务的一致邻居选择。
translated by 谷歌翻译
在统计和机器学习中具有重尾数据的模型开发强大的估计估计兴趣兴趣。本文提出了一个用于大家庭统计回归的日志截断的M估计,并在数据具有$ \ varepsilon \中的数据(0,1] $。随着相关风险函数的额外假设,我们获得了估计的$ \ ell_2 $ -Error绑定。我们的定理应用于建立具体回归的强大M估计。除了凸面回归等分位数回归之外广义线性模型,许多非凸回归也可以符合我们的定理,我们专注于强大的深度神经网络回归,这可以通过随机梯度下降算法解决。模拟和实际数据分析证明了日志截断估计的优越性超过标准估计。
translated by 谷歌翻译
联合优化(FedOpt),在大量分布式客户端协作培训学习模型的目标是对联邦学习的重要性。 Fedopt的主要问题可归因于模型分歧和通信效率,这显着影响了性能。在本文中,我们提出了一种新方法,即Losac,更有效地从异构分布式数据中学习。它的关键算法洞察力是在{每个}常规本地模型更新之后本地更新全局全梯度的估计。因此,Losac可以使客户的信息以更紧凑的方式刷新。特别是,我们研究了Losac的收敛结果。此外,Losac的奖金是能够从最近的技术泄漏梯度(DLG)中捍卫信息泄漏。最后,实验已经验证了与最先进的FedOpt算法比较Losac的优越性。具体而言,Losac平均超过100美元的价格提高了通信效率,减轻了模型分歧问题,并配备了对抗DLG的防御能力。
translated by 谷歌翻译
在机器学习和高维统计领域的有限样本理论中,恒定指定的浓度不平等至关重要。我们获得了独立亚网络随机变量总和的更清晰和常数的浓度不平等,这导致了两个尾巴的混合物:尺寸的小偏差和较大偏差的小偏差。这些界限是新的,并通过更清晰的常数改善了现有的界限。另外,如果应保留斜体,则新的子韦布尔参数。请检查整个文本。还提出了提出的,它可以为随机变量(向量)恢复紧密浓度不平等。对于统计应用,我们给出了$ \ ell_2 $ - 估计系数在负二项式回归中的估计系数时,当重尾协变量是稀疏结构分布的亚weibull时,这是负二项式回归的新结果。在应用随机矩阵时,我们得出了Bai-Yin定理的非反应版本,用于具有指数尾巴边界的亚weibull条目。最后,通过为没有第二瞬间条件的对数截断的Z-测验器演示一个子静电区域,我们讨论并定义了独立观测值的sub-weibull类型稳健估计器$ \ {x_i \} _ {i = 1 }^{n} $没有指数矩条件。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译