在本文中,我们考虑了使用$ \ ell_1 $ regularized logistic回归的方法来估算与高维iSing模型相关的图形的元学习问题,用于每个节点的邻域选择。我们的目标是在学习新任务中使用从辅助任务中学到的信息来降低其足够的样本复杂性。为此,我们提出了一种新颖的生成模型以及不当的估计方法。在我们的设置中,所有任务均为\ emph {相似}在其\ emph {Random}模型参数和支持中。通过将所有样品从辅助任务汇总到\ emph {不正确}估计一个参数向量,我们可以恢复假定的尺寸很小的真实支持联合,具有很高的概率,具有足够的样品复杂性为$ \ omega(1) $每任务,对于$ k = \ omega(d^3 \ log P)$具有$ p $节点和最大邻域大小$ d $的ISING型号的任务。然后,在对新任务的支持仅限于估计的支持联盟的支持下,我们证明,可以通过降低$ \ omega(d^3 \ log d)$的足够样品复杂性来获得新任务的一致邻居选择。
translated by 谷歌翻译
众所周知,许多网络系统,例如电网,大脑和舆论动态社交网络,都可以遵守保护法。这种现象的例子包括电网中的基尔乔夫法律和社交网络中的意见共识。网络系统中的保护定律可以建模为$ x = b^{*} y $的平衡方程,其中$ b^{*} $的稀疏模式捕获了网络的连接,$ y,x \在\ mathbb {r}^p $中分别是节点上“电势”和“注入流”的向量。节点电位$ y $会导致跨边缘的流量,并且在节点上注入的流量$ x $是网络动力学的无关紧要的。在几个实用的系统中,网络结构通常是未知的,需要从数据估算。为此,可以访问节点电位$ y $的样本,但只有节点注射$ x $的统计信息。在这个重要问题的激励下,我们研究了$ n $ y $ y $ y $ y $ y $ y $ y $ y $ b^{*} $稀疏结构的估计,假设节点注射$ x $遵循高斯分布,并带有已知的发行协方差$ \ sigma_x $。我们建议在高维度中为此问题的新$ \ ell_ {1} $ - 正则最大似然估计器,网络的大小$ p $大于样本量$ n $。我们表明,此优化问题是目标中的凸,并接受了独特的解决方案。在新的相互不一致的条件下,我们在三重$(n,p,d)$上建立了足够的条件,对于$ b^{*} $的精确稀疏恢复是可能的; $ d $是图的程度。我们还建立了在元素最大,Frobenius和运营商规范中回收$ b^{*} $的保证。最后,我们通过对拟议估计量对合成和现实世界数据的性能进行实验验证来补充这些理论结果。
translated by 谷歌翻译
This paper analyzes $\ell_1$ regularized linear regression under the challenging scenario of having only adversarially corrupted data for training. We use the primal-dual witness paradigm to provide provable performance guarantees for the support of the estimated regression parameter vector to match the actual parameter. Our theoretical analysis shows the counter-intuitive result that an adversary can influence sample complexity by corrupting the irrelevant features, i.e., those corresponding to zero coefficients of the regression parameter vector, which, consequently, do not affect the dependent variable. As any adversarially robust algorithm has its limitations, our theoretical analysis identifies the regimes under which the learning algorithm and adversary can dominate over each other. It helps us to analyze these fundamental limits and address critical scientific questions of which parameters (like mutual incoherence, the maximum and minimum eigenvalue of the covariance matrix, and the budget of adversarial perturbation) play a role in the high or low probability of success of the LASSO algorithm. Also, the derived sample complexity is logarithmic with respect to the size of the regression parameter vector, and our theoretical claims are validated by empirical analysis on synthetic and real-world datasets.
translated by 谷歌翻译
我们研究了在高维主成分分析中恢复支持的元学习(即非零条目集)。我们通过从辅助任务中学到的信息来降低新任务中足够的样本复杂性。我们假设每个任务都是具有不同支持的不同随机主组件(PC)矩阵,并且PC矩阵的支持联合很小。然后,我们通过最大化$ l_1 $调查的预测协方差来汇总所有任务中的数据,以执行单个PC矩阵的不当估计,以确定具有很高的概率,只要有足够的任务$ M,就可以恢复真正的支持联盟$和足够数量的样本$ o \ left(\ frac {\ log(p)} {m} \ right)$对于每个任务,对于$ p $ - 维矢量。然后,对于一项新颖的任务,我们证明了$ l_1 $ regularized的预测协方差的最大化,并具有额外的约束,即支持是估计支持联盟的一个子集,可以将成功支持恢复的足够样本复杂性降低到$ o( \ log | j |)$,其中$ j $是从辅助任务中恢复的支持联盟。通常,对于稀疏矩阵而言,$ | j | $将少于$ p $。最后,我们通过数值模拟证明了实验的有效性。
translated by 谷歌翻译
我们考虑发现$ k $相关的高斯定向的非循环图(DAG)的问题,其中涉及的图形结构共享一致的因果秩序和支持的支持。在多任务学习设置下,我们提出了$ L_1 / L_2 $ -Regularized最大似然估计器(MLE),用于学习$ K $线性结构方程模型。理论上我们表明,通过利用相关任务利用数据来实现联合估算器可以实现比单独的估计更好的采样复杂性来恢复因果秩序(或拓扑阶)。此外,联合估计器能够通过与一些可识别的DAG一起估计它们来恢复不可识别的DAG。最后,我们的分析还显示了联盟支持恢复的协会的一致性。为了允许实际实现,我们设计了一种连续的优化问题,其优化器与联合估计器相同,并且可以通过迭代算法有效地近似。我们验证了实验中联合估计器的理论分析和有效性。
translated by 谷歌翻译
混合模型被广泛用于拟合复杂和多模式数据集。在本文中,我们研究了具有高维稀疏潜在参数矢量的混合物,并考虑了支持这些向量的恢复的问题。尽管对混合模型中的参数学习进行了充分研究,但稀疏性约束仍然相对尚未探索。参数向量的稀疏性是各种设置的自然约束,支持恢复是参数估计的主要步骤。我们为支持恢复提供有效的算法,该算法具有对数样品的复杂性依赖于潜在空间的维度。我们的算法非常笼统,即它们适用于1)许多不同规范分布的混合物,包括统一,泊松,拉普拉斯,高斯人等。2)在统一参数的不同假设下,线性回归和线性分类器与高斯协变量的混合物与高斯协变量的混合物。在大多数这些设置中,我们的结果是对问题的首先保证,而在其余部分中,我们的结果为现有作品提供了改进。
translated by 谷歌翻译
我们提供匹配的Under $ \ sigma ^ 2 / \ log(d / n)$的匹配的上下界限为最低$ \ ell_1 $ -norm插值器,a.k.a.基础追踪。我们的结果紧紧达到可忽略的术语,而且是第一个暗示噪声最小范围内插值的渐近一致性,因为各向同性特征和稀疏的地面真理。我们的工作对最低$ \ ell_2 $ -norm插值的“良性接收”进行了补充文献,其中才能在特征有效地低维时实现渐近一致性。
translated by 谷歌翻译
我们开发机器以设计有效的可计算和一致的估计,随着观察人数而达到零的估计误差,因为观察的次数增长,当面对可能损坏的答复,除了样本的所有品,除了每种量之外的ALL。作为具体示例,我们调查了两个问题:稀疏回归和主成分分析(PCA)。对于稀疏回归,我们实现了最佳样本大小的一致性$ n \ gtrsim(k \ log d)/ \ alpha ^ $和最佳错误率$ o(\ sqrt {(k \ log d)/(n \ cdot \ alpha ^ 2))$ N $是观察人数,$ D $是尺寸的数量,$ k $是参数矢量的稀疏性,允许在数量的数量中为逆多项式进行逆多项式样品。在此工作之前,已知估计是一致的,当Inliers $ \ Alpha $ IS $ O(1 / \ log \ log n)$,即使是(非球面)高斯设计矩阵时也是一致的。结果在弱设计假设下持有,并且在这种一般噪声存在下仅被D'Orsi等人最近以密集的设置(即一般线性回归)显示。 [DNS21]。在PCA的上下文中,我们在参数矩阵上的广泛尖端假设下获得最佳错误保证(通常用于矩阵完成)。以前的作品可以仅在假设下获得非琐碎的保证,即与最基于的测量噪声以$ n $(例如,具有方差1 / n ^ 2 $的高斯高斯)。为了设计我们的估算,我们用非平滑的普通方(如$ \ ell_1 $ norm或核规范)装备Huber丢失,并以一种新的方法来分析损失的新方法[DNS21]的方法[DNS21]。功能。我们的机器似乎很容易适用于各种估计问题。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
我们研究稀疏的线性回归在一个代理网络上,建模为无向图(没有集中式节点)。估计问题被制定为当地套索损失函数的最小化,加上共识约束的二次惩罚 - 后者是获取分布式解决方案方法的工具。虽然在优化文献中广泛研究了基于惩罚的共识方法,但其高维设置中的统计和计算保证仍不清楚。这项工作提供了对此公开问题的答案。我们的贡献是两倍。 First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2 $ -loss,$ s $是稀疏性值,$ d $是环境维度,$ n $是网络中的总示例大小 - 这与集中式采样率相匹配。其次,我们表明,应用于惩罚问题的近端梯度算法,它自然导致分布式实现,线性地收敛到集中统计误差的顺序的公差 - 速率比例为$ \ mathcal {o}( d)$,揭示不可避免的速度准确性困境。数值结果证明了衍生的采样率和收敛速率缩放的紧张性。
translated by 谷歌翻译
图形模型是用于描述结构化的高尺寸概率分布的有用工具。利用最少数据学习图形模型的高效算法的开发仍然是一个有源研究主题。描述描述离散变量统计的图形模型是一个特别具有挑战性的问题,最大似然方法是棘手的。在这项工作中,我们提供了基于交互筛选框架的第一种样本有效的方法,该方法允许一个以任意基于基础指定的节点特定的离散字母和多主体交互来证明一个完全通用的离散因子模型。我们确定与模型参数化相关的单一条件,导致在任何误差规范中恢复模型结构和参数的严格保证,并且对于大类模型,可以易于验证。重要的是,我们的界限在适用于模型和用作算法的输入的参数之间进行明确区分。最后,我们表明互动筛查框架包括以前在文献中考虑的所有模型作为特殊情况,我们的分析显示了样本复杂性的系统改善。
translated by 谷歌翻译
元学习或学习学习,寻求设计算法,可以利用以前的经验快速学习新技能或适应新环境。表示学习 - 用于执行元学习的关键工具 - 了解可以在多个任务中传输知识的数据表示,这在数据稀缺的状态方面是必不可少的。尽管最近在Meta-Leature的实践中感兴趣的兴趣,但缺乏元学习算法的理论基础,特别是在学习可转让陈述的背景下。在本文中,我们专注于多任务线性回归的问题 - 其中多个线性回归模型共享常见的低维线性表示。在这里,我们提供了可提供的快速,采样高效的算法,解决了(1)的双重挑战,从多个相关任务和(2)将此知识转移到新的,看不见的任务中的常见功能。两者都是元学习的一般问题的核心。最后,我们通过在学习这些线性特征的样本复杂性上提供信息定理下限来补充这些结果。
translated by 谷歌翻译
作为安全加强学习的重要框架,在最近的文献中已经广泛研究了受约束的马尔可夫决策过程(CMDP)。然而,尽管在各种式学习设置下取得了丰富的结果,但就算法设计和信息理论样本复杂性下限而言,仍然缺乏对离线CMDP问题的基本理解。在本文中,我们专注于仅在脱机数据可用的情况下解决CMDP问题。通过采用单极浓缩系数$ c^*$的概念,我们建立了一个$ \ omega \ left(\ frac {\ min \ left \ left \ weft \ {| \ mathcal {s} || \ mathcal {a} a} |,, | \ Mathcal {s} |+i \ right \} c^*} {(1- \ gamma)^3 \ epsilon^2} \ right)$ sample Complacy度在离线cmdp问题上,其中$ i $架对于约束数量。通过引入一种简单但新颖的偏差控制机制,我们提出了一种称为DPDL的近乎最佳的原始二重学习算法。该算法证明,除了$ \ tilde {\ Mathcal {o}}}}(((1- \ gamma)^{ - 1})$外,该算法可确保零约束违规及其样本复杂性匹配上下界。还包括有关如何处理未知常数$ c^*$以及离线数据集中潜在的异步结构的全面讨论。
translated by 谷歌翻译
成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
我们研究了估计多元高斯分布中的精度矩阵的问题,其中所有部分相关性都是非负面的,也称为多变量完全阳性的顺序阳性($ \ mathrm {mtp} _2 $)。近年来,这种模型得到了重大关注,主要是由于有趣的性质,例如,无论底层尺寸如何,最大似然估计值都存在于两个观察。我们将此问题作为加权$ \ ell_1 $ -norm正常化高斯的最大似然估计下$ \ mathrm {mtp} _2 $约束。在此方向上,我们提出了一种新颖的预计牛顿样算法,该算法包含精心设计的近似牛顿方向,这导致我们具有与一阶方法相同的计算和内存成本的算法。我们证明提出的预计牛顿样算法会聚到问题的最小值。从理论和实验中,我们进一步展示了我们使用加权$ \ ell_1 $ -norm的制剂的最小化器能够正确地恢复基础精密矩阵的支持,而无需在$ \ ell_1 $ -norm中存在不连贯状态方法。涉及合成和实世界数据的实验表明,我们所提出的算法从计算时间透视比最先进的方法显着更有效。最后,我们在金融时序数据中应用我们的方法,这些数据对于显示积极依赖性,在那里我们在学习金融网络上的模块间值方面观察到显着性能。
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
尽管有许多有吸引力的财产,但内核方法受到维度的诅咒受到严重影响。例如,在$ \ mathbb {r} ^ d $的内部产品内核的情况下,再现内核希尔伯特空间(RKHS)规范对于依赖于小方向子集(RIDGE函数)的功能往往非常大。相应地,使用内核方法难以学习这样的功能。这种观察结果有动力研究内核方法的概括,由此rkhs规范 - 它等同于加权$ \ ell_2 $ norm - 被加权函数$ \ ell_p $ norm替换,我们将其称为$ \ mathcal {f} _p $ norm。不幸的是,这些方法的陶油是不清楚的。内核技巧不可用,最大限度地减少这些规范要求解决无限维凸面问题。我们将随机特征近似于这些规范,表明,对于$ p> 1 $,近似于原始学习问题所需的随机功能的数量是由样本大小的多项式的上限。因此,使用$ \ mathcal {f} _p $ norms在这些情况下是易行的。我们介绍了一种基于双重均匀浓度的证明技术,这可以对超分子化模型的研究更广泛。对于$ p = 1 $,我们对随机功能的保证近似分解。我们证明了使用$ \ mathcal {f} _1 $ norm的学习是在随机减少的$ \ mathsf {np} $ - 基于噪音的半个空间问题的问题。
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译