随着大型语言模型(LLM)的成功及其用作代码助手(例如GitHub Copilot中使用的法典),在及时设计过程中引入特定领域知识的技术变得很重要。在这项工作中,我们提出了一个名为Repo级提示生成器的框架,该框架学会使用一组规则生成示例特定的提示。这些规则从整个存储库中获取上下文,从而结合了存储库的结构和其他相关文件(例如导入,父类文件)的上下文。我们的技术不需要访问LLM的权重,因此在我们只能使用Black-Box访问LLM的情况下,它适用。我们使用从Google Code Archives获取的代码存储库进行了有关单线代码Autocossletion任务的实验。我们证明,根据我们提出的规则构建的甲骨文允许对法典的相对改进多达36%,显示了规则的质量。此外,我们表明,当我们训练模型以选择最佳规则时,我们可以在Codex上获得显着的性能提高。可以在以下网址找到我们工作的代码:https://github.com/shrivastavadisha/repo_level_prompt_generation。
translated by 谷歌翻译
传输学习方法旨在使用在丰富的源域上掠过的模型来提高数据稀缺目标域中的性能。一种成本效益的策略,线性探测涉及冻结源模型并培训目标域的新分类头。此策略的表现优于更昂贵但最先进的方法 - 将源模型的所有参数微调到目标域 - 可能是因为微调允许模型从中间层利用有用的信息否则被稍后的净化层丢弃。我们探讨了这些中间层可能直接剥削的假设。我们提出了一种方法,头对脚趾探测(Head2ToE),其从源模型的所有层中选择特征,以训练目标域的分类头。在VTAB-1K的评估中,Head2Toe与平均微调获得的性能相匹配,同时减少培训和储存成本一百倍或更多,但批判性地,用于分配转移,头部2ToE优于微调。
translated by 谷歌翻译
程序合成的目标是从示例中找到一个与给定的输入输出示例一致的计算机程序。基于大多数基于学习的方法都尝试找到一个满足所有示例的程序一次。相比之下,我们的工作考虑了一个将问题分为两个阶段的方法:(a)查找只满足一个示例的程序,(b)利用这些每个示例解决方案来产生满足所有示例的程序。我们基于多主题注意机制介绍跨聚合器神经网络模块,该机制学会组合在这些每个示例解决方案中存在的提示来合成全局解决方案。在不同长度和两个不同的实验设置下的评估显示,当鉴于同时预算时,我们的技术显着提高了PCODER的成功率[Zohar等。 AL 2018]和其他消融基线。我们工作的代码,数据和经过培训的模型可以在https://github.com/shrivastavadisha/n-peps找到。
translated by 谷歌翻译
We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder with a generative adversarial network we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data distribution while offering invariance towards e.g. translation. We apply our method to images of faces and show that it outperforms VAEs with element-wise similarity measures in terms of visual fidelity. Moreover, we show that the method learns an embedding in which high-level abstract visual features (e.g. wearing glasses) can be modified using simple arithmetic.
translated by 谷歌翻译
Machine learning algorithms frequently require careful tuning of model hyperparameters, regularization terms, and optimization parameters. Unfortunately, this tuning is often a "black art" that requires expert experience, unwritten rules of thumb, or sometimes brute-force search. Much more appealing is the idea of developing automatic approaches which can optimize the performance of a given learning algorithm to the task at hand. In this work, we consider the automatic tuning problem within the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). The tractable posterior distribution induced by the GP leads to efficient use of the information gathered by previous experiments, enabling optimal choices about what parameters to try next. Here we show how the effects of the Gaussian process prior and the associated inference procedure can have a large impact on the success or failure of Bayesian optimization. We show that thoughtful choices can lead to results that exceed expert-level performance in tuning machine learning algorithms. We also describe new algorithms that take into account the variable cost (duration) of learning experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization on a diverse set of contemporary algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks.
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
Periocular refers to the region of the face that surrounds the eye socket. This is a feature-rich area that can be used by itself to determine the identity of an individual. It is especially useful when the iris or the face cannot be reliably acquired. This can be the case of unconstrained or uncooperative scenarios, where the face may appear partially occluded, or the subject-to-camera distance may be high. However, it has received revived attention during the pandemic due to masked faces, leaving the ocular region as the only visible facial area, even in controlled scenarios. This paper discusses the state-of-the-art of periocular biometrics, giving an overall framework of its most significant research aspects.
translated by 谷歌翻译
Cell-free multi-user multiple input multiple output networks are a promising alternative to classical cellular architectures, since they have the potential to provide uniform service quality and high resource utilisation over the entire coverage area of the network. To realise this potential, previous works have developed radio resource management mechanisms using various optimisation engines. In this work, we consider the problem of overall ergodic spectral efficiency maximisation in the context of uplink-downlink data power control in cell-free networks. To solve this problem in large networks, and to address convergence-time limitations, we apply scalable multi-objective Bayesian optimisation. Furthermore, we discuss how an intersection of multi-fidelity emulation and Bayesian optimisation can improve radio resource management in cell-free networks.
translated by 谷歌翻译
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to over-smoothing of representations and also limits their scalability. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method.
translated by 谷歌翻译
Early recognition of clinical deterioration (CD) has vital importance in patients' survival from exacerbation or death. Electronic health records (EHRs) data have been widely employed in Early Warning Scores (EWS) to measure CD risk in hospitalized patients. Recently, EHRs data have been utilized in Machine Learning (ML) models to predict mortality and CD. The ML models have shown superior performance in CD prediction compared to EWS. Since EHRs data are structured and tabular, conventional ML models are generally applied to them, and less effort is put into evaluating the artificial neural network's performance on EHRs data. Thus, in this article, an extremely boosted neural network (XBNet) is used to predict CD, and its performance is compared to eXtreme Gradient Boosting (XGBoost) and random forest (RF) models. For this purpose, 103,105 samples from thirteen Brazilian hospitals are used to generate the models. Moreover, the principal component analysis (PCA) is employed to verify whether it can improve the adopted models' performance. The performance of ML models and Modified Early Warning Score (MEWS), an EWS candidate, are evaluated in CD prediction regarding the accuracy, precision, recall, F1-score, and geometric mean (G-mean) metrics in a 10-fold cross-validation approach. According to the experiments, the XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
translated by 谷歌翻译