We consider the task of text generation in language models with constraints specified in natural language. To this end, we first create a challenging benchmark Cognac that provides as input to the model a topic with example text, along with a constraint on text to be avoided. Unlike prior work, our benchmark contains knowledge-intensive constraints sourced from databases like Wordnet and Wikidata, which allows for straightforward evaluation while striking a balance between broad attribute-level and narrow lexical-level controls. We find that even state-of-the-art language models like GPT-3 fail often on this task, and propose a solution to leverage a language model's own internal knowledge to guide generation. Our method, called CognacGen, first queries the language model to generate guidance terms for a specified topic or constraint, and uses the guidance to modify the model's token generation probabilities. We propose three forms of guidance (binary verifier, top-k tokens, textual example), and employ prefix-tuning approaches to distill the guidance to tackle diverse natural language constraints. Through extensive empirical evaluations, we demonstrate that CognacGen can successfully generalize to unseen instructions and outperform competitive baselines in generating constraint conforming text.
translated by 谷歌翻译
在交互式环境中,现有的基础语言基准要么缺乏现实世界的语言元素,要么由于人类参与数据收集或反馈信号而难以扩展。为了弥合这一差距,我们开发了网络商店 - 一个模拟的电子商务网站环境,拥有11.18亿美元的现实世界中的产品和12,087美元的人群文本说明。给定指定产品需求的文本指令,代理需要导航多种类型的网页并发布各种操作以查找,自定义和购买项目。 WebShop为语言基础提供了一些挑战,包括了解构图说明,查询(重新)表述,理解和对网页中的嘈杂文本进行操作以及执行战略探索。我们为这项任务收集了超过1,600美元的人类示范,并使用强化学习,模仿学习以及预训练的图像和语言模型来训练和评估各种代理商。我们的最佳模型达到了任务成功率$ 29 \%$,它优于基于规则的启发式方法($ 9.6 \%$),但远低于人类专家绩效($ 59 \%$)。我们还分析了代理和人类轨迹,并消融各种模型组件,以提供有关具有更强语言理解和决策能力的未来代理人的见解。最后,我们表明,在Amazon.com上进行评估时,在网络商店进行培训的代理商展示了非平凡的SIM转移转移,这表明网络商店在开发可以在野外运行的实用基于网络的代理商中的潜在价值。
translated by 谷歌翻译
数据隐私和类不平衡是许多机器学习任务中的常态,而不是例外。一方面已经启动了最近的尝试,解决了从普遍的私人数据中学习的问题,另一方面是从长尾数据中学习的。但是,这两个假设在实际应用中都可能存在,而同时减轻这两个问题的有效方法仍在开发中。在本文中,我们专注于在流行的隐私保存联合学习(FL)框架的背景下使用长尾(LT)数据分布进行学习。我们在FL框架中使用不同的本地或全局长尾数据分布来表征三个方案,并突出相应的挑战。在不同方案下的初步结果表明,未来的实质性工作是更好地解决特定的联合长尾学习任务的高度必要性。
translated by 谷歌翻译
因果发现旨在从观察数据中学习因果图。迄今为止,大多数因果发现方法需要将数据存储在中央服务器中。但是,数据所有者逐渐拒绝分享他们的个性化数据以避免隐私泄漏,使这项任务通过切断第一步来更加麻烦。出现拼图:$ \ texit {如何从分散数据的原因关系推断出来自分散数据的因果关系?} $本文,具有数据的添加性噪声模型假设,我们参加了开发基于渐变的学习框架命名为DAG共享的渐变学习框架联邦因果发现(DS-FCD),可以在不直接触摸本地数据的情况下学习因果图,并自然地处理数据异质性。 DS-FCD受益于每个本地模型的两级结构。第一级别学习因果图并与服务器通信以获取来自其他客户端的模型信息,而第二级别近似于因果机制,并且从其自身的数据逐步更新以适应数据异质性。此外,DS-FCD通过利用平等的非循环性约束,将整体学习任务制定为连续优化问题,这可以通过梯度下降方法自然地解决。对合成和现实世界数据集的广泛实验验证了所提出的方法的功效。
translated by 谷歌翻译
每次使用新的(但类似)数据的应用程序都必须重复解决优化问题的应用。可以手动设计分析优化算法以迭代方式解决这些问题。一方面,数据驱动的算法可以“学习优化”(L2O),其迭代率较少,而每次迭代的成本与通用优化算法相似。另一方面,不幸的是,许多L2O算法缺乏融合保证。为了融合这些方法的优势,我们提出了一个安全的L2O框架。 Safe-L2O更新结合了保障措施,以保证近端和/或梯度甲状管的凸问题收敛。安全性在实现方面很简单且计算便宜,并且只有在数据驱动的L2O更新性能较差或似乎差异时,它才会被激活。这产生了使用机器学习来创建快速L2O算法的数值好处,同时仍然保证收敛。我们的数值示例表明,即使提供的数据不是来自培训数据的分布,Safe-L2O算法的收敛性也是如此。
translated by 谷歌翻译
We present the next generation of MobileNets based on a combination of complementary search techniques as well as a novel architecture design. MobileNetV3 is tuned to mobile phone CPUs through a combination of hardwareaware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances. This paper starts the exploration of how automated search algorithms and network design can work together to harness complementary approaches improving the overall state of the art. Through this process we create two new MobileNet models for release: MobileNetV3-Large and MobileNetV3-Small which are targeted for high and low resource use cases. These models are then adapted and applied to the tasks of object detection and semantic segmentation. For the task of semantic segmentation (or any dense pixel prediction), we propose a new efficient segmentation decoder Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP). We achieve new state of the art results for mobile classification, detection and segmentation. MobileNetV3-Large is 3.2% more accurate on ImageNet classification while reducing latency by 20% compared to MobileNetV2. MobileNetV3-Small is 6.6% more accurate compared to a MobileNetV2 model with comparable latency. MobileNetV3-Large detection is over 25% faster at roughly the same accuracy as Mo-bileNetV2 on COCO detection. MobileNetV3-Large LR-ASPP is 34% faster than MobileNetV2 R-ASPP at similar accuracy for Cityscapes segmentation.
translated by 谷歌翻译
Designing convolutional neural networks (CNN) for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant efforts have been dedicated to design and improve mobile CNNs on all dimensions, it is very difficult to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated mobile neural architecture search (MNAS) approach, which explicitly incorporate model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike previous work, where latency is considered via another, often inaccurate proxy (e.g., FLOPS), our approach directly measures real-world inference latency by executing the model on mobile phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that encourages layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our MnasNet achieves 75.2% top-1 accuracy with 78ms latency on a Pixel phone, which is 1.8× faster than MobileNetV2 [29] with 0.5% higher accuracy and 2.3× faster than NASNet [36] with 1.2% higher accuracy. Our MnasNet also achieves better mAP quality than MobileNets for COCO object detection. Code is at https://github.com/tensorflow/tpu/ tree/master/models/official/mnasnet.
translated by 谷歌翻译
Transferring the knowledge learned from large scale datasets (e.g., ImageNet) via fine-tuning offers an effective solution for domain-specific fine-grained visual categorization (FGVC) tasks (e.g., recognizing bird species or car make & model). In such scenarios, data annotation often calls for specialized domain knowledge and thus is difficult to scale. In this work, we first tackle a problem in large scale FGVC. Our method won first place in iNaturalist 2017 large scale species classification challenge. Central to the success of our approach is a training scheme that uses higher image resolution and deals with the long-tailed distribution of training data. Next, we study transfer learning via fine-tuning from large scale datasets to small scale, domainspecific FGVC datasets. We propose a measure to estimate domain similarity via Earth Mover's Distance and demonstrate that transfer learning benefits from pre-training on a source domain that is similar to the target domain by this measure. Our proposed transfer learning outperforms Im-ageNet pre-training and obtains state-of-the-art results on multiple commonly used FGVC datasets.
translated by 谷歌翻译
In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design.Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on ImageNet [1] classification, COCO object detection [2], VOC image segmentation [3]. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as actual latency, and the number of parameters.
translated by 谷歌翻译
We test grip strength and shock absorption properties of various granular material in granular jamming robotic components. The granular material comprises a range of natural, manufactured, and 3D printed material encompassing a wide range of shapes, sizes, and Shore hardness. Two main experiments are considered, both representing compelling use cases for granular jamming in soft robotics. The first experiment measures grip strength (retention force measured in Newtons) when we fill a latex balloon with the chosen grain type and use it as a granular jamming gripper to pick up a range of test objects. The second experiment measures shock absorption properties recorded by an Inertial Measurement Unit which is suspended in an envelope of granular material and dropped from a set height. Our results highlight a range of shape, size and softness effects, including that grain deformability is a key determinant of grip strength, and interestingly, that larger grain sizes in 3D printed grains create better shock absorbing materials.
translated by 谷歌翻译