医疗图像分类是图像识别领域中最关键的问题之一。该领域的主要挑战之一是缺乏标记的培训数据。此外,数据集通常会出现类不平衡,因为某些情况很少发生。结果,分类任务的准确性通常很低。特别是深度学习模型,在图像细分和分类问题上显示出令人鼓舞的结果,但它们需要很大的数据集进行培训。因此,需要从相同分布中生成更多的合成样品。先前的工作表明,特征生成更有效,并且比相应的图像生成更高。我们将此想法应用于医学成像领域。我们使用转移学习来训练针对金标准班级注释的小数据集的细分模型。我们提取了学习的功能,并使用它们使用辅助分类器GAN(ACGAN)来生成在类标签上进行调节的合成特征。我们根据其严重程度测试了下游分类任务中生成特征的质量。实验结果表明,这些生成特征的有效性及其对平衡数据和提高分类类别的准确性的总体贡献的结果有希望的结果。
translated by 谷歌翻译
在社交媒体中发现进攻性语言是社交媒体面临的主要挑战之一。研究人员提出了许多高级方法来完成这项任务。在本报告中,我们尝试利用他们的方法中的学习,并结合我们的想法以改进它们。我们在对进攻推文分类中成功实现了74%的准确性。我们还列出了社交媒体界的滥用内容检测中的即将到来的挑战。
translated by 谷歌翻译
机器翻译历史上的重要突破之一是变压器模型的发展。不仅对于各种翻译任务,而且对于大多数其他NLP任务都是革命性的。在本文中,我们针对一个基于变压器的系统,该系统能够将德语用源句子转换为其英语的对应目标句子。我们对WMT'13数据集的新闻评论德语 - 英语并行句子进行实验。此外,我们研究了来自IWSLT'16数据集的培训中包含其他通用域数据以改善变压器模型性能的效果。我们发现,在培训中包括IWSLT'16数据集,有助于在WMT'13数据集的测试集中获得2个BLEU得分点。引入定性分析以分析通用域数据的使用如何有助于提高产生的翻译句子的质量。
translated by 谷歌翻译
Bipedal robots have received much attention because of the variety of motion maneuvers that they can produce, and the many applications they have in various areas including rehabilitation. One of these motion maneuvers is walking. In this study, we presented a framework for the trajectory optimization of a 5-link (planar) Biped Robot using hybrid optimization. The walking is modeled with two phases of single-stance (support) phase and the collision phase. The dynamic equations of the robot in each phase are extracted by the Lagrange method. It is assumed that the robot heel strike to the ground is full plastic. The gait is optimized with a method called hybrid optimization. The objective function of this problem is considered to be the integral of torque-squared along the trajectory, and also various constraints such as zero dynamics are satisfied without any approximation. Furthermore, in a new framework, there is presented a constraint called impact invariance, which ensures the periodicity of the time-varying trajectories. On the other hand, other constraints provide better and more human-like movement.
translated by 谷歌翻译
The importance of humanoid robots in today's world is undeniable, one of the most important features of humanoid robots is the ability to maneuver in environments such as stairs that other robots can not easily cross. A suitable algorithm to generate the path for the bipedal robot to climb is very important. In this paper, an optimization-based method to generate an optimal stairway for under-actuated bipedal robots without an ankle actuator is presented. The generated paths are based on zero and non-zero dynamics of the problem, and according to the satisfaction of the zero dynamics constraint in the problem, tracking the path is possible, in other words, the problem can be dynamically feasible. The optimization method used in the problem is a gradient-based method that has a suitable number of function evaluations for computational processing. This method can also be utilized to go down the stairs.
translated by 谷歌翻译
Finding and localizing the conceptual changes in two scenes in terms of the presence or removal of objects in two images belonging to the same scene at different times in special care applications is of great significance. This is mainly due to the fact that addition or removal of important objects for some environments can be harmful. As a result, there is a need to design a program that locates these differences using machine vision. The most important challenge of this problem is the change in lighting conditions and the presence of shadows in the scene. Therefore, the proposed methods must be resistant to these challenges. In this article, a method based on deep convolutional neural networks using transfer learning is introduced, which is trained with an intelligent data synthesis process. The results of this method are tested and presented on the dataset provided for this purpose. It is shown that the presented method is more efficient than other methods and can be used in a variety of real industrial environments.
translated by 谷歌翻译
This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.
translated by 谷歌翻译
Convolutional Neural Networks (CNN) have shown promising results for displacement estimation in UltraSound Elastography (USE). Many modifications have been proposed to improve the displacement estimation of CNNs for USE in the axial direction. However, the lateral strain, which is essential in several downstream tasks such as the inverse problem of elasticity imaging, remains a challenge. The lateral strain estimation is complicated since the motion and the sampling frequency in this direction are substantially lower than the axial one, and a lack of carrier signal in this direction. In computer vision applications, the axial and the lateral motions are independent. In contrast, the tissue motion pattern in USE is governed by laws of physics which link the axial and lateral displacements. In this paper, inspired by Hooke's law, we first propose Physically Inspired ConsTraint for Unsupervised Regularized Elastography (PICTURE), where we impose a constraint on the Effective Poisson's ratio (EPR) to improve the lateral strain estimation. In the next step, we propose self-supervised PICTURE (sPICTURE) to further enhance the strain image estimation. Extensive experiments on simulation, experimental phantom and in vivo data demonstrate that the proposed methods estimate accurate axial and lateral strain maps.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
This paper proposes embedded Gaussian Process Barrier States (GP-BaS), a methodology to safely control unmodeled dynamics of nonlinear system using Bayesian learning. Gaussian Processes (GPs) are used to model the dynamics of the safety-critical system, which is subsequently used in the GP-BaS model. We derive the barrier state dynamics utilizing the GP posterior, which is used to construct a safety embedded Gaussian process dynamical model (GPDM). We show that the safety-critical system can be controlled to remain inside the safe region as long as we can design a controller that renders the BaS-GPDM's trajectories bounded (or asymptotically stable). The proposed approach overcomes various limitations in early attempts at combining GPs with barrier functions due to the abstention of restrictive assumptions such as linearity of the system with respect to control, relative degree of the constraints and number or nature of constraints. This work is implemented on various examples for trajectory optimization and control including optimal stabilization of unstable linear system and safe trajectory optimization of a Dubins vehicle navigating through an obstacle course and on a quadrotor in an obstacle avoidance task using GP differentiable dynamic programming (GP-DDP). The proposed framework is capable of maintaining safe optimization and control of unmodeled dynamics and is purely data driven.
translated by 谷歌翻译