生成一组高质量的对应关系或匹配是点云注册中最关键的步骤之一。本文通过共同考虑点对立的结构匹配来提出学习框架COTREG,以预测3D点云登记的对应关系。具体地,我们将这两个匹配转换为基于Wasserstein距离和基于Gromov-Wasserstein距离的优化。因此,建立对应关系的任务可以自然地重塑成耦合的最佳运输问题。此外,我们设计一个网络,以预测点云的每个点的置信度,其提供重叠区域信息以产生对应关系。我们的对应预测管道可以很容易地集成到基于学习的特征,如FCGF或FPFH等传统描述符。我们在3DMATCH,KITTI,3DCSR和ModelNet40基准上进行了全面的实验,显示了所提出的方法的最先进的性能。
translated by 谷歌翻译
准确和高效的点云注册是一个挑战,因为噪音和大量积分影响了对应搜索。这一挑战仍然是一个剩余的研究问题,因为大多数现有方法都依赖于对应搜索。为了解决这一挑战,我们通过调查深生成的神经网络来点云注册来提出新的数据驱动登记算法。给定两个点云,动机是直接生成对齐的点云,这在许多应用中非常有用,如3D匹配和搜索。我们设计了一个端到端的生成神经网络,用于对齐点云生成以实现这种动机,包含三种新组件。首先,提出了一种点多感知层(MLP)混频器(PointMixer)网络以便在自点云中有效地维护全局和局部结构信息。其次,提出了一种特征交互模块来融合来自交叉点云的信息。第三,提出了一种并行和差分样本共识方法来基于所生成的登记结果计算输入点云的变换矩阵。所提出的生成神经网络通过维持数据分布和结构相似度,在GAN框架中训练。 ModelNet40和7Scene数据集的实验表明,所提出的算法实现了最先进的准确性和效率。值得注意的是,与基于最先进的对应的算法相比,我们的方法减少了注册错误(CD)的$ 2 \次数为$ 12 \倍运行时间。
translated by 谷歌翻译
The Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, in early December 2019 and now becoming a pandemic. When COVID-19 patients undergo radiography examination, radiologists can observe the present of radiographic abnormalities from their chest X-ray (CXR) images. In this study, a deep convolutional neural network (CNN) model was proposed to aid radiologists in diagnosing COVID-19 patients. First, this work conducted a comparative study on the performance of modified VGG-16, ResNet-50 and DenseNet-121 to classify CXR images into normal, COVID-19 and viral pneumonia. Then, the impact of image augmentation on the classification results was evaluated. The publicly available COVID-19 Radiography Database was used throughout this study. After comparison, ResNet-50 achieved the highest accuracy with 95.88%. Next, after training ResNet-50 with rotation, translation, horizontal flip, intensity shift and zoom augmented dataset, the accuracy dropped to 80.95%. Furthermore, an ablation study on the effect of image augmentation on the classification results found that the combinations of rotation and intensity shift augmentation methods obtained an accuracy higher than baseline, which is 96.14%. Finally, ResNet-50 with rotation and intensity shift augmentations performed the best and was proposed as the final classification model in this work. These findings demonstrated that the proposed classification model can provide a promising result for COVID-19 diagnosis.
translated by 谷歌翻译
Users' physical safety is an increasing concern as the market for intelligent systems continues to grow, where unconstrained systems may recommend users dangerous actions that can lead to serious injury. Covertly unsafe text, language that contains actionable physical harm, but requires further reasoning to identify such harm, is an area of particular interest, as such texts may arise from everyday scenarios and are challenging to detect as harmful. Qualifying the knowledge required to reason about the safety of various texts and providing human-interpretable rationales can shed light on the risk of systems to specific user groups, helping both stakeholders manage the risks of their systems and policymakers to provide concrete safeguards for consumer safety. We propose FARM, a novel framework that leverages external knowledge for trustworthy rationale generation in the context of safety. In particular, FARM foveates on missing knowledge in specific scenarios, retrieves this knowledge with attribution to trustworthy sources, and uses this to both classify the safety of the original text and generate human-interpretable rationales, combining critically important qualities for sensitive domains such as user safety. Furthermore, FARM obtains state-of-the-art results on the SafeText dataset, improving safety classification accuracy by 5.29 points.
translated by 谷歌翻译
Conditional diffusion probabilistic models can model the distribution of natural images and can generate diverse and realistic samples based on given conditions. However, oftentimes their results can be unrealistic with observable color shifts and textures. We believe that this issue results from the divergence between the probabilistic distribution learned by the model and the distribution of natural images. The delicate conditions gradually enlarge the divergence during each sampling timestep. To address this issue, we introduce a new method that brings the predicted samples to the training data manifold using a pretrained unconditional diffusion model. The unconditional model acts as a regularizer and reduces the divergence introduced by the conditional model at each sampling step. We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks. The improvements obtained by our method suggest that the priors can be incorporated as a general plugin for improving conditional diffusion models.
translated by 谷歌翻译
In a high dimensional linear predictive regression where the number of potential predictors can be larger than the sample size, we consider using LASSO, a popular L1-penalized regression method, to estimate the sparse coefficients when many unit root regressors are present. Consistency of LASSO relies on two building blocks: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix of the regressors. In our setting where unit root regressors are driven by temporal dependent non-Gaussian innovations, we establish original probabilistic bounds for these two building blocks. The bounds imply that the rates of convergence of LASSO are different from those in the familiar cross sectional case. In practical applications given a mixture of stationary and nonstationary predictors, asymptotic guarantee of LASSO is preserved if all predictors are scale-standardized. In an empirical example of forecasting the unemployment rate with many macroeconomic time series, strong performance is delivered by LASSO when the initial specification is guided by macroeconomic domain expertise.
translated by 谷歌翻译
Existing methods for large-scale point cloud semantic segmentation require expensive, tedious and error-prone manual point-wise annotations. Intuitively, weakly supervised training is a direct solution to reduce the cost of labeling. However, for weakly supervised large-scale point cloud semantic segmentation, too few annotations will inevitably lead to ineffective learning of network. We propose an effective weakly supervised method containing two components to solve the above problem. Firstly, we construct a pretext task, \textit{i.e.,} point cloud colorization, with a self-supervised learning to transfer the learned prior knowledge from a large amount of unlabeled point cloud to a weakly supervised network. In this way, the representation capability of the weakly supervised network can be improved by the guidance from a heterogeneous task. Besides, to generate pseudo label for unlabeled data, a sparse label propagation mechanism is proposed with the help of generated class prototypes, which is used to measure the classification confidence of unlabeled point. Our method is evaluated on large-scale point cloud datasets with different scenarios including indoor and outdoor. The experimental results show the large gain against existing weakly supervised and comparable results to fully supervised methods\footnote{Code based on mindspore: https://github.com/dmcv-ecnu/MindSpore\_ModelZoo/tree/main/WS3\_MindSpore}.
translated by 谷歌翻译
Establishing open and general benchmarks has been a critical driving force behind the success of modern machine learning techniques. As machine learning is being applied to broader domains and tasks, there is a need to establish richer and more diverse benchmarks to better reflect the reality of the application scenarios. Graph learning is an emerging field of machine learning that urgently needs more and better benchmarks. To accommodate the need, we introduce Graph Learning Indexer (GLI), a benchmark curation platform for graph learning. In comparison to existing graph learning benchmark libraries, GLI highlights two novel design objectives. First, GLI is designed to incentivize \emph{dataset contributors}. In particular, we incorporate various measures to minimize the effort of contributing and maintaining a dataset, increase the usability of the contributed dataset, as well as encourage attributions to different contributors of the dataset. Second, GLI is designed to curate a knowledge base, instead of a plain collection, of benchmark datasets. We use multiple sources of meta information to augment the benchmark datasets with \emph{rich characteristics}, so that they can be easily selected and used in downstream research or development. The source code of GLI is available at \url{https://github.com/Graph-Learning-Benchmarks/gli}.
translated by 谷歌翻译
In recent years, using a self-supervised learning framework to learn the general characteristics of graphs has been considered a promising paradigm for graph representation learning. The core of self-supervised learning strategies for graph neural networks lies in constructing suitable positive sample selection strategies. However, existing GNNs typically aggregate information from neighboring nodes to update node representations, leading to an over-reliance on neighboring positive samples, i.e., homophilous samples; while ignoring long-range positive samples, i.e., positive samples that are far apart on the graph but structurally equivalent samples, a problem we call "neighbor bias." This neighbor bias can reduce the generalization performance of GNNs. In this paper, we argue that the generalization properties of GNNs should be determined by combining homogeneous samples and structurally equivalent samples, which we call the "GC combination hypothesis." Therefore, we propose a topological signal-driven self-supervised method. It uses a topological information-guided structural equivalence sampling strategy. First, we extract multiscale topological features using persistent homology. Then we compute the structural equivalence of node pairs based on their topological features. In particular, we design a topological loss function to pull in non-neighboring node pairs with high structural equivalence in the representation space to alleviate neighbor bias. Finally, we use the joint training mechanism to adjust the effect of structural equivalence on the model to fit datasets with different characteristics. We conducted experiments on the node classification task across seven graph datasets. The results show that the model performance can be effectively improved using a strategy of topological signal enhancement.
translated by 谷歌翻译
Recent advances on text-to-image generation have witnessed the rise of diffusion models which act as powerful generative models. Nevertheless, it is not trivial to exploit such latent variable models to capture the dependency among discrete words and meanwhile pursue complex visual-language alignment in image captioning. In this paper, we break the deeply rooted conventions in learning Transformer-based encoder-decoder, and propose a new diffusion model based paradigm tailored for image captioning, namely Semantic-Conditional Diffusion Networks (SCD-Net). Technically, for each input image, we first search the semantically relevant sentences via cross-modal retrieval model to convey the comprehensive semantic information. The rich semantics are further regarded as semantic prior to trigger the learning of Diffusion Transformer, which produces the output sentence in a diffusion process. In SCD-Net, multiple Diffusion Transformer structures are stacked to progressively strengthen the output sentence with better visional-language alignment and linguistical coherence in a cascaded manner. Furthermore, to stabilize the diffusion process, a new self-critical sequence training strategy is designed to guide the learning of SCD-Net with the knowledge of a standard autoregressive Transformer model. Extensive experiments on COCO dataset demonstrate the promising potential of using diffusion models in the challenging image captioning task. Source code is available at \url{https://github.com/YehLi/xmodaler/tree/master/configs/image_caption/scdnet}.
translated by 谷歌翻译